Abstract:
In a lithographic process, product units such as semiconductor wafers are subjected to lithographic patterning operations and chemical and physical processing operations. Alignment data or other measurements are made at stages during the performance of the process to obtain object data representing positional deviation or other parameters measured at points spatially distributed across each unit. This object data is used to obtain diagnostic information by performing a multivariate analysis to decompose a set of vectors representing the units in said multidimensional space into one or more component vectors. Diagnostic information about the industrial process is extracted using the component vectors. The performance of the industrial process for subsequent product units can be controlled based on the extracted diagnostic information.
Abstract:
In a lithographic process, product units such as semiconductor wafers are subjected to lithographic patterning operations and chemical and physical processing operations. Alignment data or other measurements are made at stages during the performance of the process to obtain object data representing positional deviation or other parameters measured at points spatially distributed across each unit. This object data is used to obtain diagnostic information by performing a multivariate analysis to decompose a set of vectors representing the units in the multidimensional space into one or more component vectors. Diagnostic information about the industrial process is extracted using the component vectors. The performance of the industrial process for subsequent product units can be controlled based on the extracted diagnostic information.
Abstract:
A method and associated apparatuses for controlling a process of manufacturing semiconductor devices on a substrate. The method includes obtaining process data relating to the process and determining a correction for the process based on the process data and a first control objective associated with the devices on the substrate. A first probability of the first control objective being achievable is determined and the correction adjusted based on the probability and at least a second control objective having a second probability of being achievable compared to the first control objective.
Abstract:
A method for improving the yield of a lithographic process, the method including: determining a parameter fingerprint of a performance parameter across a substrate, the parameter fingerprint including information relating to uncertainty in the performance parameter; determining a process window fingerprint of the performance parameter across the substrate, the process window being associated with an allowable range of the performance parameter; and determining a probability metric associated with the probability of the performance parameter being outside an allowable range. Optionally a correction to the lithographic process is determined based on the probability metric.
Abstract:
A method, system and program for determining a fingerprint of a parameter. The method includes determining a contribution from a device out of a plurality of devices to a fingerprint of a parameter. The method includes obtaining parameter data and usage data, wherein the parameter data is based on measurements for multiple substrates having been processed by the plurality of devices, and the usage data indicates which of the devices out of the plurality of the devices were used in the processing of each substrate; and determining the contribution using the usage data and parameter data.
Abstract:
A method for improving the yield of a lithographic process, the method including: determining a parameter fingerprint of a performance parameter across a substrate, the parameter fingerprint including information relating to uncertainty in the performance parameter; determining a process window fingerprint of the performance parameter across the substrate, the process window being associated with an allowable range of the performance parameter; and determining a probability metric associated with the probability of the performance parameter being outside an allowable range. Optionally a correction to the lithographic process is determined based on the probability metric.
Abstract:
A method includes determining topographic information of a substrate for use in a lithographic imaging system, determining or estimating, based on the topographic information, imaging error information for a plurality of points in an image field of the lithographic imaging system, adapting a design for a patterning device based on the imaging error information. In an embodiment, a plurality of locations for metrology targets is optimized based on imaging error information for a plurality of points in an image field of a lithographic imaging system, wherein the optimizing involves minimizing a cost function that describes the imaging error information. In an embodiment, locations are weighted based on differences in imaging requirements across the image field.
Abstract:
A method of monitoring a device manufacturing process, the method including; obtaining an estimated time variation of a process parameter; determining, on the basis of the estimated time variation, a sampling plan for measurements to be performed on a plurality of substrates to obtain information about the process parameter; measuring substrates in accordance with the sampling plan to obtain a plurality of measurements; and determining an actual time variation of the process parameter on the basis of the measurements.
Abstract:
In a lithographic process, product units such as semiconductor wafers are subjected to lithographic patterning operations and chemical and physical processing operations. Alignment data or other measurements are made at stages during the performance of the process to obtain object data representing positional deviation or other parameters measured at points spatially distributed across each unit. This object data is used to obtain diagnostic information by performing a multivariate analysis to decompose a set of vectors representing the units in said multidimensional space into one or more component vectors. Diagnostic information about the industrial process is extracted using the component vectors. The performance of the industrial process for subsequent product units can be controlled based on the extracted diagnostic information.