Abstract:
The disclosure includes an analog to digital converter (ADC). The ADC includes a comparator to compare sample values of an analog signal in an analog domain to reference values to determine digital values in a digital domain. The digital values correspond to the analog signal and may be determined according to successive approximation. The ADC also includes chop switches to modulate the analog signal to increase a frequency of flicker noise in the analog domain. The ADC also includes an un-chop switch to demodulate the digital values in the digital domain prior filtration of the flicker noise by a digital filter.
Abstract:
A system and method dynamically selects digital-to-analog (DAC) circuit elements to provide a True differential-output delta-sigma (ΔΣ) DAC. The sign and magnitude of a received N-bit input code is determined. If the input code comprises a positive value, m+r circuit elements are selected from a plurality of circuit elements by a positive element selector, in which comprises a number of rotational elements, and r circuit elements are selected by a negative element selector. Each selected circuit element comprises a circuit element that was not selected for an immediately preceding received input code and has a corresponding minimum usage count value. If the input digital code comprises a negative value, m+r circuit elements are selected by the negative element selector, and r circuit elements are selected by the positive element selector. The circuit elements are capable of being configured as positive or negative circuit elements.
Abstract:
The disclosure includes a mechanism for mitigating electrical current leakage in a Successive Approximation Register (SAR) Analog to Digital Converter (ADC) by using a Flash ADC in conjunction with the SAR ADC. A sequence controller in the SAR ADC uses the output of the Flash ADC to control a switch array. Depending on the output of the Flash ADC, the sequence controller can control the switch array to couple at least one capacitor in the capacitor network of the SAR ADC to a voltage that reduces charge leakage in the SAR ADC. The voltage may be a pre-defined positive or negative reference voltage.
Abstract:
Embodiments of the invention include an oversampling Analog to Digital Converter that uses uneven non-overlapping clock phases to reduce switched capacitor circuit power consumption. A return-to-zero sub phase of one of the clock phases may also be used for feedback reference capacitors. A delay lock loop may be combined with the non-overlapping clock phase generator to control accurate timing.
Abstract:
The disclosure includes an analog to digital converter (ADC). The ADC includes a comparator to compare sample values of an analog signal in an analog domain to reference values to determine digital values in a digital domain. The digital values correspond to the analog signal and may be determined according to successive approximation. The ADC also includes chop switches to modulate the analog signal to increase a frequency of flicker noise in the analog domain. The ADC also includes an un-chop switch to demodulate the digital values in the digital domain prior filtration of the flicker noise by a digital filter.
Abstract:
The disclosure includes an analog to digital converter (ADC) comprising a successive approximation register (SAR) unit including a capacitive network to take a sample of an analog signal and a comparator to approximate a digital value based on the analog signal sample via successive comparison. The disclosure also includes a programmable sequencer. The sequencer includes a control memory containing control signal states indicating control signals to operate the SAR unit. The sequencer also includes a program memory including sequence instructions defining a duty cycle for the SAR unit by referencing the control signal states in the control memory. The sequencer also includes a processing circuit to apply control signals according to the control signal states in an order defined by the sequence instructions to manage a sequence of operations at the SAR unit according to the duty cycle to control the ADC.
Abstract:
A circuit can include a voltage comparator Vd having a first input, a second input, and an output; a first plurality of capacitors Cp[0:n] that each have a top plate and a bottom plate, wherein each top plate is electrically coupled with the first input of the voltage comparator Vd, wherein each top plate is also switchably electrically coupled with a common mode voltage Vcm, and wherein each bottom plate is switchably electrically coupled between a first input voltage Vinp, a reference voltage Vref, the common mode voltage Vcm, and ground; a second plurality of capacitors Cn[0:n] that each have a top plate and a bottom plate, wherein each top plate is electrically coupled with the second input of the voltage comparator Vd, wherein each top plate is also switchably electrically coupled with the common mode voltage Vcm, and wherein each bottom plate is switchably electrically coupled between a second input voltage Vinn, the reference voltage Vref, the common mode voltage Vcm, and ground; and a successive approximation register (SAR) controller coupled with the output of the voltage comparator Vd.
Abstract:
Embodiments of the invention include an oversampling Analog to Digital Converter that uses uneven non-overlapping clock phases to reduce switched capacitor circuit power consumption. A return-to-zero sub phase of one of the clock phases may also be used for feedback reference capacitors. A delay lock loop may be combined with the non-overlapping clock phase generator to control accurate timing.
Abstract:
A programmable Active Noise Compensation (ANC) system for an audio input includes a parameter store structured to store a number of various filter parameters. A mode of operation is selected that represents the type of environment the ANC system is operating in—feed-forward, feed-back, or combined feed-forward and feedback. Different filter parameters are retrieved from the parameter store based on the selected mode and desired operation. Audio inputs are sampled at a relatively high sample rate that matches inputs from a feed-forward and feedback microphone that may be present in the system. Parameters and instructions may be changed in the system responsive to changing conditions of the compensation system.
Abstract:
A circuit can include a voltage comparator Vd having a first input, a second input, and an output; a first plurality of capacitors Cp[0:n] that each have a top plate and a bottom plate, wherein each top plate is electrically coupled with the first input of the voltage comparator Vd, wherein each top plate is also switchably electrically coupled with a common mode voltage Vcm, and wherein each bottom plate is switchably electrically coupled between a first input voltage Vinp, a reference voltage Vref, the common mode voltage Vcm, and ground; a second plurality of capacitors Cn[0:n] that each have a top plate and a bottom plate, wherein each top plate is electrically coupled with the second input of the voltage comparator Vd, wherein each top plate is also switchably electrically coupled with the common mode voltage Vcm, and wherein each bottom plate is switchably electrically coupled between a second input voltage Vinn, the reference voltage Vref, the common mode voltage Vcm, and ground; and a successive approximation register (SAR) controller coupled with the output of the voltage comparator Vd.