Abstract:
The present invention is directed to methods of quantifying variations resulting from manufacturing-induced corner rounding of various features, and structures for testing same. In one illustrative embodiment, the method includes forming a plurality of test structures on a semiconducting substrate, each of the test structures having at least one physical dimension that varies relative to the other of the plurality of test structures, at least some of the test structures exhibiting at least some degree of manufacturing-induced corner rounding, forming at least one reference test structure, performing at least one electrical test on the plurality of test structures and on the reference test structure to thereby produce electrical test results, and analyzing the test results to determine an impact of the manufacturing-induced corner rounding on the performance of the plurality of test structures.
Abstract:
A method of reducing an effective channel length of a lightly doped drain transistor (50), includes the steps of forming a gate electrode (52) and a gate oxide (54) over a semiconductor substrate (56) and implanting a drain region (58) of the substrate (56) with a sub-amorphous large tilt angle implant to thereby supply interstitials (62) at a location under the gate oxide (54). The method also includes forming a lightly doped drain extension region (66) in the drain region (58) of the substrate (56) and forming a drain (70) in the drain region (58) and forming a source extension region (67) and a source (72) in a source region (60) of the substrate (56). Lastly, the method includes thermally treating the substrate (56), wherein the interstitials (62) enhance a lateral diffusion (84) under the gate oxide (54) without substantially impacting a vertical diffusion (86) of the extension regions (66, 67), thereby reducing the effective channel length without an increase in a junction depth of the drain (70) and the drain extension region (66) or the source (72) and the source extension region (67).
Abstract:
A method of fabricating p-type metal oxide semiconductor (PMOS) transistor devices on a common substrate is presented. The method provides a first portion of semiconductor material and a second portion of semiconductor material on the common substrate. The first portion of semiconductor material and the second portion of semiconductor material are insulated from each other. The method continues by creating first PMOS transistor devices using the first portion of semiconductor material. The first PMOS transistor devices include stressor regions that impart compressive stress to channel regions of the first PMOS transistor devices. The method also creates second PMOS transistor devices using the second portion of semiconductor material. The second PMOS transistor devices do not include channel stressor regions.
Abstract:
The present invention is directed to a transistor with an asymmetric silicon germanium source region, and various methods of making same. In one illustrative embodiment, the transistor includes a gate electrode formed above a semiconducting substrate comprised of silicon, a doped source region comprising a region of epitaxially grown silicon that is doped with germanium formed in the semiconducting substrate and a doped drain region formed in the semiconducting substrate.
Abstract:
The techniques and technologies described herein relate to the automatic creation of photoresist masks for stress liners used with semiconductor based transistor devices. The stress liner masks are generated with automated design tools that leverage layout data corresponding to features, devices, and structures on the wafer. A resulting stress liner mask (and wafers fabricated using the stress liner mask) defines a stress liner coverage area that extends beyond the boundary of the transistor area and into a stress insensitive area of the wafer. The extended stress liner further enhances performance of the respective transistor by providing additional compressive/tensile stress.
Abstract:
A stress-enhanced semiconductor device is provided which includes a substrate having an inactive region and an active region, a first-type stress layer overlying at least a portion of the active region, and a second-type stress layer. The active region includes a first lateral edge which defines a first width of the active region, and a second lateral edge which defines a second width of the active region. The second-type stress layer is disposed adjacent the second lateral edge of the active region.
Abstract:
A test structure includes first and second pluralities of transistors. The first plurality of transistors includes gate electrodes of a first length. The second plurality of transistors includes gate electrodes of a second length different than the first length. A channel area of the transistors in the first plurality is substantially equal to a channel area of the transistors in the second plurality. A method for using the test structure includes measuring a performance metric of the first and second pluralities of transistors. Variation in the performance metric associated with the first plurality of transistors is compared to variation in the performance metric associated with the second plurality of transistors to identify a random length variation component associated with the first plurality of transistors.
Abstract:
Ultra narrow and thin polycrystalline silicon gate electrodes are formed by patterning a polysilicon gate precursor, reducing its width and height by selectively oxidizing its upper and side surfaces, and then removing the oxidized surfaces. Embodiments include patterning the polysilicon gate precursor with an oxide layer thereunder, ion implanting to form deep source/drain regions, forming a nitride layer on the substrate surface on each side of the polysilicon gate precursor, thermally oxidizing the upper and side surfaces of the polysilicon gate precursor thereby consuming silicon, and then removing the oxidized upper and side surfaces leaving a polysilicon gate electrode with a reduced width and a reduced height. Subsequent processing includes forming shallow source/drain extensions, forming dielectric sidewall spacers on the polysilicon gate electrode and then forming metal silicide layers on the upper surface of the polysilicon gate electrode and over the source/drain regions.
Abstract:
Silicon on insulator technology and strained silicon technology provide semiconductor devices with high performance capabilities. Shallow trench isolation technology provides smaller devices with increased reliability. Bulk silicon technology provides devices requiring deep ion implant capabilities and/or a high degree of thermal management. A semiconductor device including silicon on insulator regions, strained silicon layer, shallow trench isolation structures, and bulk silicon regions is provided on a single semiconductor substrate.
Abstract:
Various methods of fabricating a source/drain structure are provided. In one aspect, a method of processing a semiconductor workpiece is provided that includes implanting a neutral ion species into the substrate at a sub-amorphizing dosage to provide a plurality of interstitials and forming a source/drain region in the substrate by implanting impurities of a first conductivity type proximate the plurality of interstitials. The plurality of interstitials retards diffusion of the impurities. Impurity diffusion is retarded, resulting in better activation and a more abrupt impurity profile.