Abstract:
In one aspect, a diode includes a substrate having a first type dopant; a buried layer having a second type dopant and formed within the substrate; an epitaxial layer having the second type dopant and formed above the buried layer; and a plurality of regions having the first type dopant within the epitaxial layer. The plurality of regions includes a first region, a second region, and a third region. The diode also includes a base well having the first type dopant and located within the epitaxial layer and in contact with the third and fourth regions. In a reverse-bias mode, the diode is an electrostatic discharge (ESD) clamp and forms parasitic transistors comprising a first bipolar junction transistor (BJT), a second BJT and a third BJT.
Abstract:
A metal-oxide semiconductor (MOS) transistor structure is provided herein having one or more horizontal and/or one or more vertical MOS transistor structures formed around trench and liner isolation regions. The trench region serves as a gate electrode, while the liner is formed around the sidewalls of trench region and serves as a gate dielectric of a parasitic MOS within the transistor structure. The MOS transistor structure includes various doped regions formed around one or more portions of the trench and liner regions. The doped regions can have one or more different doping types such that in response to a voltage applied to the trench region, a channel region is formed in at least one of the doped regions and provides a current path within the MOS transistor between different doped regions.
Abstract:
A gate-less electrostatic discharge (ESD) protection device is provided that can be formed in various complementary metal-oxide-semiconductor (CMOS) systems. The gate-less ESD event protection device includes a substrate, a first doped region formed in the substrate, a second doped region extending into the first doped region, a third doped region extending into the first doped region, a first node formed over a portion of the second doped region and coupled to a source terminal and a second node formed over the third doped region and coupled to a drain terminal. The gate-less ESD protection devices can be formed such that no gate electrode is formed and the gate-less ESD protection device does not include a gate terminal. Thus, an operating voltage range of the gate-less ESD protection device is not limited by gate oxide degradation.
Abstract:
An apparatus includes a package, a plurality of external connections extending outside the package, and a first die having a first electrical contact coupled to a first connection of the plurality of external connections. The apparatus also includes a second die having a second electrical contact coupled to a second connection of the plurality of external connections. A conductor is electrically coupled between the first contact and the second contact to allow electrostatic discharge current to flow between the first die to the second die.
Abstract:
An electrical device may include a substrate; a first doped region of the substrate having a p doping type; a second doped region adjacent to the first doped region of the substrate having an n doping type, wherein an interface between the first and second doped regions forms a p-n junction; and a circuit element placed in spaced relation to the p-n junction, the circuit element configured to produce an electric field that interacts with the p-n junction to change a reverse breakdown voltage of the p-n junction. Applicants for the electrical device include ESD protection circuits.
Abstract:
An electronic device includes a package, a plurality of external leads extending outside the package, a first die within the package having one or more first contacts electrically coupled to at least a first one of the external leads, and a second die within the package having one or more second contacts electrically coupled to at least a second one of the external leads. A capacitive coupling may be positioned between the first and second die to allow electrostatic discharge (ESD) current to flow between the first die and the second die in response to an ESD event and to electrically isolate the first and second die from each other in the absence of the ESD event.
Abstract:
An apparatus includes a first terminal, a second terminal, and a conduction path circuit coupled between the first and second terminals. The conduction path circuit includes an input terminal to receive an enable signal which, when activated, allows the conduction path circuit to conduct electrical current between the first and second terminal. A control circuit coupled to the input terminal of the conduction path circuit is configured to selectively activate the enable signal.
Abstract:
An electronic circuit includes semiconductor substrate having a first doping type and a reference terminal coupled to the semiconductor substrate. A tub area having a second doping type is formed in the semiconductor substrate. A well area having the first doping type is formed within the tub area. A driver circuit comprising a transistor is formed within the well area and has an output terminal. A control circuit is coupled to the driver circuit for controlling the driver circuit. A second transistor is within the well area and coupled in series between the driver circuit and the output terminal, the second transistor having a first terminal coupled to the driver circuit and a second terminal coupled to the output terminal. A biasing circuit is coupled to a gate terminal of the second transistor and configured to bias the transistor to a conducting state.