摘要:
A lithographic structure comprising: an organic antireflective material disposed on a substrate; and a silicon antireflective material disposed on the organic antireflective material. The silicon antireflective material comprises a crosslinked polymer with a SiOx backbone, a chromophore, and a transparent organic group that is substantially transparent to 193 nm or 157 nm radiation. In combination, the organic antireflective material and the silicon antireflective material provide an antireflective material suitable for deep ultraviolet lithography. The invention is also directed to a process of making the lithographic structure.
摘要:
A method and a structure. The structure includes: a solid core comprising a first photoresist material, the core having a bottom surface on a substrate, a top surface and opposite first and second side surfaces between the top surface and the bottom surface; and a shell comprising a second photoresist material, the shell on the top surface of the substrate, the shell containing a cavity open to the top surface of the substrate, the shell formed over the top surface and the first and second side surfaces walls of the core, the core completely filling the cavity. The core is stiffer than the shell. The method includes: forming the core from a first photoresist layer and forming the shell from a second photoresist layer applied over the core. The core may be cross-linked to increase its stiffness.
摘要:
A mask design for enhancing line end resolution is provided. In an embodiment, a mask for use in patterning an underlying layer comprises opaque regions and transparent regions arranged to define a line having an end, a slit extending laterally through the line a spaced distance from the end of the line, and a feature extending above or below the space adjacent to the end of the line.
摘要:
Methods of forming adjacent polyconductor line ends and a mask therefor are disclosed. In one embodiment, the method includes forming a polyconductor layer over an isolation region; forming a mask over the polyconductor layer, the mask including shapes to create the polyconductor line ends and a correction element to ensure a designed proximity of the polyconductor line ends; and etching the polyconductor layer using the patterned photoresist mask to create the adjacent polyconductor line ends, wherein the correction element is removed during the etching.
摘要:
A structure and a method for forming the same. The method includes providing a structure including (a) a hole layer, and (b) a pattern transfer layer on and in direct physical contact with the hole layer, wherein the pattern transfer layer comprises a pattern transfer layer hole; depositing an acid supply layer on a side wall of the pattern transfer layer hole; transferring acids from the acid supply layer to an acid storage region in the pattern transfer layer abutting the side wall of the pattern transfer layer hole after said depositing is performed; removing the acid supply layer after said transferring is performed; and performing a chemical shrinking process to the pattern transfer layer hole utilizing the acids from the acid storage region after said removing is performed so as to shrink the pattern transfer layer hole.
摘要:
A method of forming a semiconductor device having a substrate, an active region and an inactive region includes: forming a hardmask layer over the substrate; transferring a first pattern into the hardmask layer in the active region of the semiconductor device; forming one or more fills in the inactive region; forming a cut-away hole within, covering, or partially covering, the one or more fills to expose a portion of the hardmask layer, the exposed portion being within the one or more fills; and exposing the hardmask layer to an etchant to divide the first pattern into a second pattern including at least two separate elements.
摘要:
An underlayer to be patterned with a composite pattern is formed on a substrate. The composite pattern is decomposed into a first pattern and a second pattern, each having reduced complexity than the composite pattern. A hard mask layer is formed directly on the underlying layer. A first photoresist is applied over the hard mask layer and lithographically patterned with the first pattern, which is transferred into the hard mask layer by a first etch. A second photoresist is applied over the hard mask layer. The second photoresist is patterned with the second pattern to expose portions of the underlying layer. The exposed portions of the underlying layer are etched employing the second photoresist and the hard mask layer, which contains the first pattern so that the composite pattern is transferred into the underlying layer.
摘要:
Integrated circuits and methods of manufacture and design thereof are disclosed. For example, a method of manufacturing includes depositing a gate material over a semiconductor substrate, and depositing a first resist layer over the gate material. A first mask is used to pattern the first resist layer to form first and second resist features. The first resist features include pattern for gate lines of the semiconductor device and the second resist features include printing assist features. A second mask is used to form a resist template; the second mask removes the second resist features.
摘要:
Methods of forming adjacent polyconductor line ends and a mask therefor are disclosed. In one embodiment, the method includes forming a polyconductor layer over an isolation region; forming a mask over the polyconductor layer, the mask including shapes to create the polyconductor line ends and a correction element to ensure a designed proximity of the polyconductor line ends; and etching the polyconductor layer using the patterned photoresist mask to create the adjacent polyconductor line ends, wherein the correction element is removed during the etching.
摘要:
A method of reducing parametric variation in an integrated circuit (IC) chip and an IC chip with reduced parametric variation. The method includes: on a first wafer having a first arrangement of chips, each IC chip divided into a second arrangement of regions, measuring a test device parameter of test devices distributed in different regions; and on a second wafer having the first arrangement of IC chips and the second arrangement of regions, adjusting a functional device parameter of identically designed field effect transistors within one or more regions of all IC chips of the second wafer based on a values of the test device parameter measured on test devices in regions of the IC chip of the first wafer by a non-uniform adjustment of physical or metallurgical polysilicon gate widths of the identically designed field effect transistors from region to region within each IC chip.