NITRIDE PROTECTIVE COATINGS ON AEROSPACE COMPONENTS AND METHODS FOR MAKING THE SAME

    公开(公告)号:US20230050169A1

    公开(公告)日:2023-02-16

    申请号:US17977651

    申请日:2022-10-31

    Abstract: Embodiments of the present disclosure generally relate to protective coatings on various substrates including aerospace components and methods for depositing the protective coatings. In one or more embodiments, an aerospace component has a protective coating containing an aluminum oxide layer disposed on a surface of the aerospace component, a metal-containing catalytic layer disposed on the aluminum oxide layer, and a boron nitride layer disposed on the metal-containing catalytic layer. The aerospace component contains a superalloy having at least nickel and aluminum. In some examples, the aerospace component is a turbine blade, a turbine vane, a support member, a frame, a rib, a fin, a pin fin, a fuel nozzle, a combustor liner, a combustor shield, a heat exchanger, a fuel line, a fuel valve, an internal cooling channel, or any combination thereof.

    METHODS FOR CLEANING AEROSPACE COMPONENTS

    公开(公告)号:US20220055772A1

    公开(公告)日:2022-02-24

    申请号:US17404823

    申请日:2021-08-17

    Abstract: Embodiments of the present disclosure generally relate to methods for cleaning aerospace components having oxidation, corrosion, contaminants, and/or other degradations. In one or more embodiments, a cleaning method includes positioning the aerospace component into a processing region of a processing chamber, introducing hydrogen gas into the processing region, maintaining the processing region at a pressure of about 100 mTorr to about 5,000 mTorr, and heating the aerospace component at a temperature of about 500° C. to about 1,200° C. for about 0.5 hours to about 24 hours to produce a cleaned surface on the aerospace component. In other embodiments, a cleaning method includes exposing the aerospace component to ozone while maintaining the aerospace component at a temperature of about 15° C. to about 500° C. for 0.25 hours to about 24 hours to produce a cleaned surface on the aerospace component.

    PROTECTION OF COMPONENTS FROM CORROSION

    公开(公告)号:US20210262099A1

    公开(公告)日:2021-08-26

    申请号:US17313858

    申请日:2021-05-06

    Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof.

    METHODS FOR FORMING PROTECTIVE COATINGS CONTAINING CRYSTALLIZED ALUMINUM OXIDE

    公开(公告)号:US20210071299A1

    公开(公告)日:2021-03-11

    申请号:US16670555

    申请日:2019-10-31

    Abstract: Embodiments of the present disclosure generally relate to protective coatings on substrates and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on a substrate includes depositing a chromium oxide layer containing amorphous chromium oxide on a surface of the substrate during a first vapor deposition process and heating the substrate containing the chromium oxide layer comprising the amorphous chromium oxide to convert at least a portion of the amorphous chromium oxide to crystalline chromium oxide during a first annealing process. The method also includes depositing an aluminum oxide layer containing amorphous aluminum oxide on the chromium oxide layer during a second vapor deposition process and heating the substrate containing the aluminum oxide layer disposed on the chromium oxide layer to convert at least a portion of the amorphous aluminum oxide to crystalline aluminum oxide during a second annealing process.

    PROTECTION OF COMPONENTS FROM CORROSION
    26.
    发明申请

    公开(公告)号:US20190330746A1

    公开(公告)日:2019-10-31

    申请号:US16283567

    申请日:2019-02-22

    Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof, and is from 1 nm to 3 microns in thickness.

Patent Agency Ranking