摘要:
An electric discharge machining apparatus of the type in which an electric power for electric discharge is accumulated in capacitors to perform electric discharge machining. To provide an electric discharge machining apparatus in which the manufacturing cost is relatively low, the machining speed is high, the machined surface is not damaged, and the electrode wear is low, a plurality of capacitors are connected in parallel with a machining gap which is formed by a machining electrode and workpiece that face each other. Charging resistors are provided in a charging circuit which is connected between a charging device for charging the capacitors and the capacitors. Switches are connected in series in a discharging circuit which is connected between the capacitors and the machining gap. A control device for controlling the on/off operation of the switches sequentially is provided to performing the electric discharge machining with high speed and high accuracy.
摘要:
Provided are a wire electric discharge machining method for poorly conductive materials, such as solar cell silicon, and a semiconductor wafer manufacturing method and a solar battery cell manufacturing method based on the wire electric discharge machining method. Electrical discharge machining of a high volume resistivity, hard and brittle materials, having a volume resistivity that is equal to or higher than 0.5 Ω·cm and equal to or lower than 5 Ω·cm is performed by applying a pulse voltage having a pulse width that is equal to or higher than 1 μsec and equal to or lower than 4 μsec and having a peak current at the time of machining a wire electrode that is equal to or higher than 10A and equal to or lower than 50A to a wire electrode and generating a discharge pulse between the wire electrode and a subject to be machined.
摘要:
A signal processing portion obtains the reciprocal of a composite impedance of gap static capacitance and a plasma impedance, obtains composite static capacitance which is the sum of the gap static capacitance and a static capacitance component included in the plasma impedance from an imaginary part of the reciprocal, and obtains a resistance component included in the plasma impedance from a real part of the reciprocal. A gap detection device obtains the static capacitance component by using a model representing the characteristics of the reciprocal of the plasma impedance and the resistance component and obtains the gap static capacitance by subtracting the static capacitance component from the composite static capacitance. The gap detection device obtains a gap from the obtained gap static capacitance. Thus provided is a technique to detect a gap between a nozzle of a laser beam machine for outputting a laser beam and an object to be machined with high accuracy.
摘要:
To provide a method of manufacturing a field emission display having an improved electron emission effect by means of laser irradiation and accordingly mitigating a luminance fluctuation among pixels, and other such techniques. Provided is a method of manufacturing a field emission display which includes a cathode substrate and a fluorescent screen glass opposed to the cathode substrate and emits light when an electron emitted from a carbon nanotube printed layer (7) containing a carbon nanotube of the cathode electrode enters a fluorescent material of the fluorescent screen glass, the method including a laser beam irradiation step of irradiating a surface of the carbon nanotube printed layer (7) with a laser beam having its energy density to be spatially modulated to expose and raise the carbon nanotube of the carbon nanotube printed layer so as to form a laser irradiation part (B) and a non-laser irradiation part (C).
摘要:
An electric discharge machining apparatus is provided with an electrode mounting section which mounts a tool electrode, and an electrode driving section which has a radial driving section which supports and drives the electrode mounting section in a non-contact manner in a radial direction and a thrust driving section which supports and drives the electrode mounting section in a non-contact manner in a thrust direction, and a machining state is controlled by adjusting a position of the tool electrode by the electrode driving section. Because of such a structure, a mass increase of a section which should be driven together with the electrode is restricted, and high response in X-axis, Y-axis and Z-axis directions are achieved, whereby an electric discharge machining apparatus capable of improving a machining speed and a machining accuracy is achieved.
摘要:
An electric discharge machine for machining a workpiece by an electric discharge by supplying a machining fluid to a gap between an electrode and the workpiece and supplying pulses to the workpiece while providing the electrode with a jump motion, the jump motion being a periodic motion of the electrode relative to the workpiece; wherein the electric discharge machine detects a state quantity caused in a main body of the electric discharge machine by a reactive force produced by a machining operation in the gap between the electrode and the workpiece and changes machining conditions of the workpiece in accordance with a detected value of the state quantity.
摘要:
An error signal is obtained from a reference value and a value indicating a detected state in machining, a first controlled variable is obtained by adding a value obtained by multiplying the error signal by a proportion gain to a value obtained by multiplying the error signal by a first integration gain, a second controlled variable is obtained by multiplying an instruction value by a second integration gain for integration, and a value obtained by adding the first controlled variable to the second controlled variable and multiplying the sum by a machining trajectory vector is used as a controlled variable for a driving unit for adjusting a distance between an electrode and a workpiece in discharge machining. Therefore, it is possible to realize a discharge machining control method and apparatus in which the machining speed can be improved by always maintaining the discharge machining process in an optimal state.
摘要:
To obtain high machining speed and machining accuracy in three-dimensional machining by using of an electrode of simple shape. Applying voltage between an electrode of simple shape and a workpiece, performing three-dimensional control by an NC control while synthesizing a feed of a Z-axis direction for correcting longitudinal consumed amount of an electrode with an X-Y plane feed, storing amount equivalent to an X-Y moving distance in an X-Y plane corresponding to correcting moving amount of the Z-axis direction in an electrical discharge machining method for machining a desired three-dimensional shape and performing a feed of correcting moving amount in the Z-axis direction each time a moving distance in the X-Y plane on a moving locus during machining reaches the above stored amount.
摘要:
An electric discharge machining apparatus in which at least either of a tool electrode or a workpiece is made of an anisotropic conductive material, includes, on a good conductive surface 20b of the anisotropic conductive material 2, a portion for connecting an isotropic conductive member 22. Electric discharge is generated on the good conductive surface 20b of the anisotropic conductive material 2. A conductive adhesive agent 23 is employed to bond the anisotropic conductive material 2 and the isotropic conductive member 22 to each other. The anisotropic conductive material is a pyrocarbon material. The pyrocarbon heat resolved carbon material is employed as a tool electrode material. Incombustible dielectric fluid, such as pure water, is employed as dielectric fluid. Moreover, there are provided apparatus for measuring voltage during electric discharge, apparatus for setting a threshold value for use to determine whether the electric discharge is normal electric discharge or abnormal electric discharge and apparatus for interrupting supply of a discharge current in a case where the measured discharge voltage is higher than the threshold value.
摘要:
A method and apparatus for detecting and controlling the operation of an electric discharge machine for machining a workpiece. The machining is conducted by generating pulse discharges at a machining gap formed by a machining electrode and the workpiece opposed to each other. The alternating-current components or high frequency components of at least one of the current, voltage and impedance of the machining gap, the rectified components thereof, or amplitude, frequency or other signal characteristics thereof are detected and processed for control of the machining. The processing may include frequency analysis, pulse counting, threshold detection and the like using analog and digital processing.