Abstract:
A medical data processing method for tracking the position of a body surface of a patient's body, the method comprising determining, based on initial surface reflection data and reflection pattern registration data, body surface movement data describing whether the body surface has undergone a movement.
Abstract:
A medical data processing method for determining a change in the position of a soft tissue body part of a patient's body, the data processing method being constituted to be executed by a computer and comprising the following steps: a) acquiring (S10, S20) bony body part planned position data comprising bony body part planned position information describing a planned position of a bony body part of the patient's body; b) acquiring (S10, S20) soft tissue body part planned position data comprising soft tissue body part planned position information describing a planned position of the soft tissue body part; c) acquiring (S11, S21) bony body part actual position data comprising bony body part actual position information describing an actual position of the bony body part; d) acquiring (S11, S21) soft tissue body part actual position data comprising soft tissue body part actual position information describing an actual position of the soft tissue body part; e) determining (S12, S22), based on the bony body part planned position data and the bony body part actual position data, bony body part position transformation data comprising bony body part position transformation information describing a bony body part position transformation between the planned position and the actual position of the bony body part; f) determining (S13, S23), based on the bony body part position transformation data and the soft tissue body part actual position data, soft tissue transformed actual position data comprising soft tissue transformed actual position information describing a transformed actual position of the soft tissue body part; g) determining (S14, S24), based on the soft tissue transformed actual position data and the soft tissue body part planned position data, soft tissue body part position transformation data comprising soft tissue body part position transformation information describing a soft tissue body part position transformation between the planned position of the of the soft tissue body part and the transformed actual position of the soft tissue body part.
Abstract:
The invention relates to a method for determining the position of an object moving within a body, wherein the body is connected to markers, a movement signal is determined based on the measured movement of the markers, images are taken from the object using a camera or detector, wherein the camera or detector is moved with respect to the object, it is determined from which direction or range of angles or segment the most images corresponding to a predefined cycle of the movement signal are taken, and using at least some or all of the images of the segment containing the most images for a specified movement cycle, an image of the object is reconstructed.
Abstract:
A computer-implemented medical method of determining a breathing signal of a patient is disclosed. The method includes determining a motion trajectory of a structure associated with at least one body part of the patient, the motion trajectory being indicative of a respiratory movement of the structure, acquiring surface data representative of a position of a surface region of the patient, computing an intersection of the determined motion trajectory and the acquired surface data, and determining a breathing signal of the patient based on the computed intersection. The breathing signal is indicative of a breathing state of the patient.
Abstract:
The present invention relates to a medical data processing method of determining the representation of an anatomical body part (2) of a patient (1) in a sequence of medical images, the anatomical body part (2) being subject to a vital movement of the patient (1), the method being constituted to be executed by a computer and comprising the following steps:
a) acquiring advance medical image data comprising a time-related advance medical image comprising a representation of the anatomical body part (2) in a specific movement phase; b) acquiring current medical image data describing a sequence of current medical images, wherein the sequence comprises a specific current medical image comprising a representation of the anatomical body part (2) in the specific movement phase, and a tracking current medical image which is different from the specific current medical image and comprises a representation of the anatomical body part (2) in a tracking movement phase which is different from the specific movement phase; c) determining, based on the advance medical image data and the current medical image data, specific image subset data describing a specific image subset of the specific current medical image, the specific image subset comprising the representation of the anatomical body part (2); d) determining, based on the current medical image data and the image subset data, subset tracking data describing a tracked image subset in the tracking current medical image, the tracked image subset comprising the representation of the anatomical body part (2).
Abstract:
A camera assembly (3) for use in medical tracking applications, comprising a range camera (4) and a thermographic camera (5) in a fixed relative position.
Abstract:
A camera assembly for use in medical tracking applications having a range camera and a thermographic camera in a fixed relative position. The range camera is configured to acquire a first image of an object at a first instant of time and a second image at a second instant of time. The thermographic camera is configured to acquire a first thermal image of the object at the first instant and a second thermal image at the second instant. A processor identifies at least one point pair in the first thermal image and the second thermal image. The at least one point pair is mapped to corresponding point pairs associated with the first image and the second image. Movement of the object is determined based on the mapping.
Abstract:
A dynamic anatomic atlas is disclosed, comprising static atlas data describing atlas segments and dynamic atlas data comprising information on a dynamic property which information is respectively linked to the atlas segments.
Abstract:
The inventive approach positionally determines a periodically moving structure of a patient's anatomy by acquiring one or more images of a periodically moving anatomical structure of interest. The exposure time of each image covers at least one whole motion cycle of the structure, such that each acquired image depicts at least one whole motion cycle.
Abstract:
The disclosed method encompasses reconstruction of a three-dimensional position of a tracking structure (which may comprise a target of radiation treatment) as reconstructed tracking structure data from pairs of two-dimensional tracking images which are input as tracking image data. Each tracking image contained in a pair of tracking images is compared to a tracking representation of the tracking structure contained in a search template image generated from the same perspective onto the tracking structure as the associated tracking image and input as search template data. The tracking image having the highest at local degree of similarity to its associated search template image is selected as a starting point (the first tracking image) for computing a corresponding image position (a complement point) in the other tracking image (the second tracking image) on the basis of applying epipolar geometry outgoing from the position in the first tracking image associated with the highest local degree of similarity. The method then continues with determining whether there is a point in the second tracking image having a higher degree of similarity than the complement point. Depending on the result of this analysis, an accumulated value of similarity is determined for each pair of tracking images depending on the sum of similarity values of the maximum similarity points in the first and second tracking images so determined. The position of the tracking structure is determined as the intersection of back-projection lines of the points being associated with the highest sum of associated similarity values. Thereby, the reliability of position determination from stereoscopic two-dimensional x-ray images can be enhanced.