Abstract:
Disclosed is a microorganism of Escherichia sp. producing O-acetyl homoserine, and a method of producing O-acetyl homoserine in high yield using the microorganism.
Abstract:
The present disclosure relates to a protein having the activity of exporting O-acetylhomoserine and a novel modified protein thereof, a microorganism capable of producing O-acetylhomoserine with enhanced expression of the protein, and a method for producing O-acetylhomoserine using the microorganism.
Abstract:
The present disclosure relates to a novel O-acetylhomoserine sulfhydrylase variant, a polynucleotide encoding the same, a vector comprising the polynucleotide, a strain capable of expressing the variant, and a method for producing L-methionine using the variant.
Abstract:
The present invention relates to a method of producing bio-based homoserine lactone and bio-based organic acid through hydrolysis of O-acyl homoserine produced by a microorganism in the presence of an acid catalyst. According to the present invention, O-acyl homoserine produced by a microorganism is used as a raw material for producing 1,4-butanediol, gamma-butyrolactone, tetrahydrofuran and the like, which are industrially highly useful. The O-acyl homoserine produced by a microorganism can substitute conventional petrochemical products, can solve environmental concerns, including the emission of pollutants and the exhaustion of natural resources, and can be continuously renewable so as not to exhaust natural resources.
Abstract:
The present invention relates to a method for enhancing the solubility of methionine. More particularly, the present invention relates to a method for increasing the solubility of methionine, in which mineral and sulfuric acid are added at an appropriate ratio to enhance the methionine solubility, thereby overcoming the problem of low solubility of methionine in water.