Abstract:
A nucleic acid molecule comprising a variant rpoC coding sequence is disclosed. The variant rpoC coding sequence encodes a variant RpoC which regulates copy number of a plasmid. Also disclosed are a recombinant microorganism comprising the nucleic acid molecule, a method for regulating copy number of a subject vector in the recombinant microorganism, and a method for making a target product by use of the recombinant microorganism.
Abstract:
The present invention relates to a polypeptide which is resistant to feedback inhibition by methionine and has an activity of homoserine O-succinyltransferase, a microorganism for producing O-succinylhomoserine which expresses the polypeptide, and a method for producing O-succinylhomoserine using the same.
Abstract:
The present invention relates to a polypeptide having a resistant to feedback inhibition by methionine and an activity of homoserine O-succinyltransferase, a O-succinyl homoserine-producing microorganism expressing the polypeptide, and a method for producing O-succinyl homoserine using the same.
Abstract:
The present disclosure relates to a protein having the activity of exporting O-acetylhomoserine and a novel modified protein thereof, a microorganism capable of producing O-acetylhomoserine with enhanced expression of the protein, and a method for producing O-acetylhomoserine using the microorganism.
Abstract:
The present invention relates to a recombinant microorganism producing quinolinic acid, more particularly, a microorganism producing quinolinic acid and having attenuated activity or eliminated activity of a protein having a sequence of SEQ ID NO: 1 and a method of producing quinolinic acid by using the recombinant microorganism.
Abstract:
The present disclosure relates to a novel O-acetylhomoserine sulfhydrylase variant, a polynucleotide encoding the same, a vector comprising the polynucleotide, a strain capable of expressing the variant, and a method for producing L-methionine using the variant.
Abstract:
The present invention relates to a quinolinic acid-producing recombinant microorganism expressing a fusion protein of L-aspartate oxidase and quinolinate synthase linked via a linker, and a method for producing quinolinic acid using the same.
Abstract:
The present invention relates to a method of producing bio-based homoserine lactone and bio-based organic acid through hydrolysis of O-acyl homoserine produced by a microorganism in the presence of an acid catalyst. According to the present invention, O-acyl homoserine produced by a microorganism is used as a raw material for producing 1,4-butanediol, gamma-butyrolactone, tetrahydrofuran and the like, which are industrially highly useful. The O-acyl homoserine produced by a microorganism can substitute conventional petrochemical products, can solve environmental concerns, including the emission of pollutants and the exhaustion of natural resources, and can be continuously renewable so as not to exhaust natural resources.
Abstract:
The present invention relates to a polypeptide having a resistant to feedback inhibition by methionine and an activity of homoserine O-succinyltransferase, a O-succinyl homoserine-producing microorganism expressing the polypeptide, and a method for producing O-succinyl homoserine using the same.
Abstract:
The present invention relates to a quinolinic acid-producing recombinant microorganism expressing a fusion protein of L-aspartate oxidase and quinolinate synthase linked via a linker, and a method for producing quinolinic acid using the same.