Abstract:
A method for firing a green honeycomb ceramic body including heating the green honeycomb ceramic body from room temperature to a first temperature of less than or equal to about 350° C. with at least one heating rate of greater than or equal to about 80° C./hr. The green honeycomb ceramic body may be heated from the first temperature to a second temperature of greater than or equal to about 800° C. at a heating rate of greater than or equal to about 90° C./hr. The green honeycomb ceramic body may be heated from the second temperature to a third temperature of greater than or equal to about 1000° C. The green honeycomb ceramic body may include aluminum raw materials for forming an aluminum titanate ceramic body.
Abstract:
Disclosed are ceramic bodies comprised of a tialite phase and at least one silicate phase with a rare earth oxide and zirconium additions and methods for the manufacture of the same.
Abstract:
Disclosed herein are green bodies comprising at least one ceramic-forming powder; at least one binder; and at least one cross-linked starch present in an amount of at least about 20% by weight as a super addition. Further disclosed herein is a method of making a porous ceramic body comprising mixing at least one ceramic-forming powder, at least one solvent such as water, at least one binder, and at least one cross-linked starch present in an amount of about 20% by weight as a super addition to form a batch composition; extruding the batch composition to form a green body; drying the green body; and firing the green body to form a porous ceramic body. Also disclosed herein are methods of screening a green body for making a porous ceramic body.
Abstract:
Disclosed herein are formed ceramic substrates comprising an oxide ceramic material, wherein the formed ceramic substrate comprises a low elemental alkali metal content, such as less than about 1000 ppm. Also disclosed are composite bodies comprising at least one catalyst and a formed ceramic substrate comprising an oxide ceramic material, wherein the composite body has a low elemental alkali metal content, such as less than about 1000 ppm, and methods for preparing the same.
Abstract:
Methods of manufacturing a ceramic honeycomb body having a honeycomb structure with a matrix of intersecting walls, and a skin disposed on an outer peripheral portion of the matrix where the skin has a first average porosity and the interior portion of the matrix has a second average porosity greater than the first average porosity. The methods include coating at least the skin with a fluid formulation containing a sintering aid and subsequently firing the honeycomb structure. In certain embodiments, a glass layer is formed in the skin or in regions of the walls directly adjacent to the skin. In certain embodiments, the coating is applied to a green honeycomb body, and in other embodiments the coating is applied to a ceramic honeycomb body. Other honeycomb bodies and methods are described.
Abstract:
Ceramic honeycomb bodies with a matrix of intersecting walls having an interior portion with a first average bulk porosity, and a skin having a second average bulk porosity, wherein the second average bulk porosity is less than the first average bulk porosity. Methods of manufacturing a ceramic honeycomb bodies include providing a firing cycle for the ceramic honeycomb structure such that at least the skin of the honeycomb structure is subjected to a thermal spike in firing temperature while the interior portion of the matrix is subjected to a lesser spike in firing temperature.
Abstract:
Methods of manufacturing a ceramic honeycomb body having a honeycomb structure with a matrix of intersecting walls, and a skin disposed on an outer peripheral portion of the matrix where the skin has a first average porosity and the interior portion of the matrix has a second average porosity that is greater than the first average porosity. The methods include coating at least the skin with a fluid formulation containing a sintering aid and subsequently firing the honeycomb structure. In certain embodiments, a glass layer is formed in the skin or in regions of the walls directly adjacent to the skin. In certain embodiments, the coating is applied to a green honeycomb structure, and in other embodiments the coating is applied to a ceramic honeycomb structure. Other honeycomb bodies and methods are described.
Abstract:
Ceramic honeycomb bodies with a matrix of intersecting walls having an interior portion with a first average bulk porosity, and a skin having a second average bulk porosity, wherein the second average bulk porosity is less than the first average bulk porosity. Methods of manufacturing a ceramic honeycomb bodies include providing a firing cycle for the ceramic honeycomb structure such that at least the skin of the honeycomb structure is subjected to a thermal spike in firing temperature while the interior portion of the matrix is subjected to a lesser spike in firing temperature.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.