Abstract:
Methods of manufacturing a ceramic honeycomb body having a honeycomb structure with a matrix of intersecting walls, and a skin disposed on an outer peripheral portion of the matrix where the skin has a first average porosity and the interior portion of the matrix has a second average porosity that is greater than the first average porosity. The methods include coating at least the skin with a fluid formulation containing a sintering aid and subsequently firing the honeycomb structure. In certain embodiments, a glass layer is formed in the skin or in regions of the walls directly adjacent to the skin. In certain embodiments, the coating is applied to a green honeycomb structure, and in other embodiments the coating is applied to a ceramic honeycomb structure. Other honeycomb bodies and methods are described.
Abstract:
Aluminum titanate-containing particles made up of a conglomerate of multiple partial grains. The aluminum titanate-containing particles are formed by breaking apart ceramic bodies along cracks, which are formed predominantly through the grains, rather than between the grains. Batch mixtures forming the aluminum titanate-containing particles, as well as batch mixtures utilizing the aluminum titanate particles are disclosed. Green bodies, such as green honeycomb bodies having peak intensity ratios (PIRs) in an axial direction of less than or equal to 0.50, ceramic honeycomb bodies, methods of manufacturing green honeycomb bodies, and ceramic honeycomb bodies are provided, as are other aspects.
Abstract:
Disclosed herein are formed ceramic substrates comprising an oxide ceramic material, wherein the formed ceramic substrate comprises a low elemental alkali metal content, such as less than about 1000 ppm. Also disclosed are composite bodies comprising at least one catalyst and a formed ceramic substrate comprising an oxide ceramic material, wherein the composite body has a low elemental alkali metal content, such as less than about 1000 ppm, and methods for preparing the same.
Abstract:
A method for firing a green honeycomb ceramic body in a kiln may include heating the green honeycomb ceramic body in four stages. The first stage may include heating the green honeycomb ceramic body from room temperature to a first temperature that at a first heating rate that is greater than or equal to about 75° C./hr. The second stage may include heating the green honeycomb ceramic body from the first temperature to a second temperature at a second heating rate that is less than or equal to the first heating rate. The third stage may include heating the green honeycomb ceramic body from the second temperature to a hold temperature at a third heating rate that is less than or equal to the first heating rate. The fourth stage may include holding the green honeycomb ceramic body at the hold temperature to remove residual carbon.
Abstract:
Disclosed are ceramic bodies comprised of a tialite phase and at least one silicate phase with a rare earth oxide and zirconium additions and methods for the manufacture of the same.
Abstract:
Disclosed herein are methods for preparing a titanate compound powder comprising titanate compound particles having a controlled particle size and/or particle size distribution. The methods include mixing at least one first inorganic compound chosen from sources of a first metal or metal oxide, at least one second inorganic compound chosen from sources of titania, and at least one binder to form a mixture; calcining the mixture to form a polycrystalline material comprising a plurality of titanate compound grains and a plurality of micro-cracks; and breaking the polycrystalline material along at least a portion of the microcracks. Also disclosed are titanate compound powders having a controlled particle size distribution, ceramic batch compositions comprising the powders, and ceramic articles prepared from the batch compositions.
Abstract:
The disclosure relates to ceramic-body-forming batch materials comprising at least one pore former and inorganic batch components comprising at least one silica source having a specified particle size distribution, methods of making ceramic bodies using the same, and ceramic bodies made in accordance with said methods. The disclosure additionally relates to methods for reducing pore size variability in ceramic bodies and/or reducing process variability in making ceramic bodies.
Abstract:
A method of plugging a honeycomb body is disclosed herein, the method comprising: applying a mask layer to a honeycomb body comprising a plurality of channels; forming a plurality of holes in the mask layer such that the plurality of holes are aligned with the plurality of channels; positioning a nozzle defining an opening proximate the mask layer; moving at least one of the nozzle and the honeycomb body relative to one another; and passing a plugging cement through the opening defined by the nozzle against the mask layer such that the plugging cement passes through the plurality of holes in the mask layer and enters the plurality of channels of the honeycomb body.
Abstract:
A cement mixture for application to a honeycomb body and a method of forming a plugged ceramic honeycomb body is provided. The cement mixture contains a plurality of inorganic particles including at least about 50% of a refractory material selected from at least one of alumina and zirconia and less than about 15% titania (by weight), a pore forming agent, an organic binder, and a liquid vehicle.