Quantum processor with instance programmable qubit connectivity

    公开(公告)号:US09710758B2

    公开(公告)日:2017-07-18

    申请号:US14691268

    申请日:2015-04-20

    CPC classification number: G06N99/002 G06F15/82

    Abstract: In a quantum processor some couplers couple a given qubit to a nearest neighbor qubit (e.g., vertically and horizontally in an ordered 2D array), other couplers couple to next-nearest neighbor qubits (e.g., diagonally in the ordered 2D array). Couplers may include half-couplers, to selectively provide communicative coupling between a given qubit and other qubits, which may or may not be nearest or even next-nearest-neighbors. Tunable couplers selective mediate communicative coupling. A control system may impose a connectivity on a quantum processor, different than an “as designed” or “as manufactured” physical connectivity. Imposition may be via a digital processor processing a working or updated working graph, to map or embed a problem graph. A set of exclude qubits may be created from a comparison of hardware and working graphs. An annealing schedule may adjust a respective normalized inductance of one or more qubits, for instance to exclude certain qubits.

    Analog processor comprising quantum devices

    公开(公告)号:US11526463B2

    公开(公告)日:2022-12-13

    申请号:US17355458

    申请日:2021-06-23

    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.

    ANALOG PROCESSOR COMPRISING QUANTUM DEVICES
    27.
    发明申请

    公开(公告)号:US20200293486A1

    公开(公告)日:2020-09-17

    申请号:US16859672

    申请日:2020-04-27

    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.

    SYSTEMS AND METHODS FOR FABRICATION OF SUPERCONDUCTING INTEGRATED CIRCUITS

    公开(公告)号:US20200274050A1

    公开(公告)日:2020-08-27

    申请号:US16870537

    申请日:2020-05-08

    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A niobium/aluminum oxide/niobium trilayer may be formed and individual Josephson Junctions (JJs) formed. A protective cap may protect a JJ during fabrication. A hybrid dielectric may be formed. A superconductive integrated circuit may be formed using a subtractive patterning and/or additive patterning. A superconducting metal layer may be deposited by electroplating and/or polished by chemical-mechanical planarization. The thickness of an inner layer dielectric may be controlled by a deposition process. A substrate may include a base of silicon and top layer including aluminum oxide. Depositing of superconducting metal layer may be stopped or paused to allow cooling before completion. Multiple layers may be aligned by patterning an alignment marker in a superconducting metal layer.

    ANALOG PROCESSOR COMPRISING QUANTUM DEVICES
    29.
    发明申请

    公开(公告)号:US20190324941A1

    公开(公告)日:2019-10-24

    申请号:US16421211

    申请日:2019-05-23

    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.

    QUANTUM PROCESSOR WITH INSTANCE PROGRAMMABLE QUBIT CONNECTIVITY

    公开(公告)号:US20190228331A1

    公开(公告)日:2019-07-25

    申请号:US16258082

    申请日:2019-01-25

    Abstract: In a quantum processor some couplers couple a given qubit to a nearest neighbor qubit (e.g., vertically and horizontally in an ordered 2D array), other couplers couple to next-nearest neighbor qubits (e.g., diagonally in the ordered 2D array). Couplers may include half-couplers, to selectively provide communicative coupling between a given qubit and other qubits, which may or may not be nearest or even next-nearest-neighbors. Tunable couplers selective mediate communicative coupling. A control system may impose a connectivity on a quantum processor, different than an “as designed” or “as manufactured” physical connectivity. Imposition may be via a digital processor processing a working or updated working graph, to map or embed a problem graph. A set of exclude qubits may be created from a comparison of hardware and working graphs. An annealing schedule may adjust a respective normalized inductance of one or more qubits, for instance to exclude certain qubits.

Patent Agency Ranking