Abstract:
A semiconductor device is provided which includes a substrate including an inactive region and an active region, a gate electrode structure having portions overlying the active region, a compressive layer overlying the active region, and a tensile layer overlying the inactive region and located outside the active region. The active region has a lateral edge which defines a width of the active region, and a transverse edge which defines a length of the active region. The gate electrode structure includes: a common portion spaced apart from the active region; a plurality of gate electrode finger portions integral with the common portion, and a plurality of fillet portions integral with the common portion and the gate electrode finger portions. A portion of each gate electrode finger portion overlies the active region. The fillet portions are disposed between the common portion and the gate electrode finger portions, and do not overlie the active region. The compressive layer also overlies the gate electrode finger portions, and the tensile layer is disposed adjacent the transverse edge of the active region.
Abstract:
A test structure includes first and second pluralities of transistors. The first plurality of transistors includes gate electrodes of a first length. The second plurality of transistors includes gate electrodes of a second length different than the first length. A channel area of the transistors in the first plurality is substantially equal to a channel area of the transistors in the second plurality. A method for using the test structure includes measuring a performance metric of the first and second pluralities of transistors. Variation in the performance metric associated with the first plurality of transistors is compared to variation in the performance metric associated with the second plurality of transistors to identify a random length variation component associated with the first plurality of transistors.
Abstract:
The present invention is directed to methods of quantifying variations resulting from manufacturing-induced corner rounding of various features, and structures for testing same. In one illustrative embodiment, the method includes forming a plurality of test structures on a semiconducting substrate, each of the test structures having at least one physical dimension that varies relative to the other of the plurality of test structures, at least some of the test structures exhibiting at least some degree of manufacturing-induced corner rounding, forming at least one reference test structure, performing at least one electrical test on the plurality of test structures and on the reference test structure to thereby produce electrical test results, and analyzing the test results to determine an impact of the manufacturing-induced corner rounding on the performance of the plurality of test structures.
Abstract:
A method of reducing an effective channel length of a lightly doped drain transistor (50), includes the steps of forming a gate electrode (52) and a gate oxide (54) over a semiconductor substrate (56) and implanting a drain region (58) of the substrate (56) with a sub-amorphous large tilt angle implant to thereby supply interstitials (62) at a location under the gate oxide (54). The method also includes forming a lightly doped drain extension region (66) in the drain region (58) of the substrate (56) and forming a drain (70) in the drain region (58) and forming a source extension region (67) and a source (72) in a source region (60) of the substrate (56). Lastly, the method includes thermally treating the substrate (56), wherein the interstitials (62) enhance a lateral diffusion (84) under the gate oxide (54) without substantially impacting a vertical diffusion (86) of the extension regions (66, 67), thereby reducing the effective channel length without an increase in a junction depth of the drain (70) and the drain extension region (66) or the source (72) and the source extension region (67).
Abstract:
A method of fabricating p-type metal oxide semiconductor (PMOS) transistor devices on a common substrate is presented. The method provides a first portion of semiconductor material and a second portion of semiconductor material on the common substrate. The first portion of semiconductor material and the second portion of semiconductor material are insulated from each other. The method continues by creating first PMOS transistor devices using the first portion of semiconductor material. The first PMOS transistor devices include stressor regions that impart compressive stress to channel regions of the first PMOS transistor devices. The method also creates second PMOS transistor devices using the second portion of semiconductor material. The second PMOS transistor devices do not include channel stressor regions.
Abstract:
Apparatus for semiconductor device structures and related fabrication methods are provided. A method for fabricating a semiconductor device structure on an isolated region of semiconductor material comprises forming a plurality of gate structures overlying the isolated region of semiconductor material and masking edge portions of the isolated region of semiconductor material. While the edge portions are masked, the fabrication method continues by forming recesses between gate structures of the plurality of gate structures and forming stressor regions in the recesses. The method continues by unmasking the edge portions and implanting ions of a conductivity-determining impurity type into the stressor regions and the edge portions.
Abstract:
The present invention is directed to a transistor with an asymmetric silicon germanium source region, and various methods of making same. In one illustrative embodiment, the transistor includes a gate electrode formed above a semiconducting substrate comprised of silicon, a doped source region comprising a region of epitaxially grown silicon that is doped with germanium formed in the semiconducting substrate and a doped drain region formed in the semiconducting substrate.
Abstract:
A test structure includes first and second pluralities of transistors. The first plurality of transistors includes gate electrodes of a first length. The second plurality of transistors includes gate electrodes of a second length different than the first length. A channel area of the transistors in the first plurality is substantially equal to a channel area of the transistors in the second plurality. A method for using the test structure includes measuring a performance metric of the first and second pluralities of transistors. Variation in the performance metric associated with the first plurality of transistors is compared to variation in the performance metric associated with the second plurality of transistors to identify a random length variation component associated with the first plurality of transistors.
Abstract:
Silicon on insulator technology and strained silicon technology provide semiconductor devices with high performance capabilities. Shallow trench isolation technology provides smaller devices with increased reliability. Bulk silicon technology provides devices requiring deep ion implant capabilities and/or a high degree of thermal management. A semiconductor device including silicon on insulator regions, strained silicon layer, shallow trench isolation structures, and bulk silicon regions is provided on a single semiconductor substrate.
Abstract:
Various methods of fabricating a source/drain structure are provided. In one aspect, a method of processing a semiconductor workpiece is provided that includes implanting a neutral ion species into the substrate at a sub-amorphizing dosage to provide a plurality of interstitials and forming a source/drain region in the substrate by implanting impurities of a first conductivity type proximate the plurality of interstitials. The plurality of interstitials retards diffusion of the impurities. Impurity diffusion is retarded, resulting in better activation and a more abrupt impurity profile.