Abstract:
The invention provides a method of forming a semiconductor structure, which include: providing an intermediate semiconductor structure having semiconductor substrate, a fin having an EG oxide layer in contact with at least a portion of the fin, and a gate stack disposed over a portion of the fin; forming a silicon nitride layer over portions of the fin that are not located under the gate stack; and after forming the silicon nitride layer, performing one or more ion implantation steps on the intermediate semiconductor structure. The invention also provides a method of forming a semiconductor structure including: providing an intermediate semiconductor structure having a semiconductor substrate, a fin having an EG oxide layer in contact with at least a portion of the fin, and a gate material disposed over the fin; forming, over the fin and gate material of the intermediate semiconductor structure, a gate stack hardmask including an oxide layer; forming a silicon nitride barrier layer on the oxide layer of the gate stack hardmask; performing one or more gate stack hardmask patterning steps; removing the EG oxide layer from portions of the fin that are not located under the gate; and subsequent to removing the EG oxide layer from portions of the fin that are not located under the gate, performing one or more ion implantation steps.
Abstract:
Approaches for providing a hardmask used during a halo/extension implant of a static random access memory (SRAM) layout for a semiconductor device are disclosed. Specifically, approaches are provided for forming a pull-down (PD) transistor over a substrate; forming a pass-gate (PG) transistor over the substrate; and patterning a hardmask over the device, the hardmask including a first section adjacent the PD transistor and a second section adjacent the PG transistor, wherein a distance between the first section and the PD transistor is shorter than a distance between the second section and the PG transistor. The respective distances between the first section and the PD transistor, and the second section and the PG transistor, are selected to prevent a halo/extension implant from impacting one side of the PD transistor, while allowing the halo/extension implant to impact both sides of the PG transistor.
Abstract:
Bulk semiconductor devices are co-fabricated on a bulk semiconductor substrate with SOI devices. The SOI initially covers the entire substrate and is then removed from the bulk device region. The bulk device region has a thicker dielectric on the substrate than the SOI region. The regions are separated by isolation material, and may or may not be co-planar.
Abstract:
A method can include epitaxially growing epitaxial growth material within a logic region of a semiconductor structure. A method can include performing simultaneously with the growing epitaxial growth within an analog region of the semiconductor structure. A method can include performing epitaxial growth to form an epitaxial growth formation that defines an electrode of an analog device within an analog region of the semiconductor structure, wherein the performing includes using a first surface and a second surface as seed surfaces.
Abstract:
Methods of forming a SDB with a partial or complete insulator structure formed over the SDB and resulting devices are provided. Embodiments include forming a SDB with a first width in a substrate; forming a first metal gate in an ILD on top of the SDB, with a second width larger than the first width; forming second and third metal gates in the ILD on the substrate on opposite sides of the first metal gate, the second and third metal gates laterally separated from the first metal gate; forming a photoresist over the second and third gates; removing the first metal gate down to the SDB, forming a cavity; removing the photoresist; and filling the cavity with an insulator layer.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a fin protection layer around a fin, forming a sacrificial gate electrode above a section of the fin protection layer, forming at least one sidewall spacer adjacent the sacrificial gate electrode, removing the sacrificial gate electrode to define a gate cavity that exposes a portion of the fin protection layer, oxidizing at least the exposed portion of the fin protection layer to thereby form an oxidized portion of the fin protection layer, and removing the oxidized portion of the fin protection layer so as to thereby expose a surface of the fin within the gate cavity.
Abstract:
An approach for controlling a critical dimension (CD) of a RMG of a semiconductor device is provided. Specifically, embodiments of the present invention allow for CD consistency between a dummy gate and a subsequent RMG. In a typical embodiment, a dummy gate having a cap layer is formed over a substrate. A re-oxide layer is then formed over the substrate and around the dummy gate. A set of doping implants will then be implanted in the substrate, and the re-oxide layer will subsequently be removed (after the set of doping implants have been implanted). A set of spacers will then be formed along a set of side walls of the dummy gate and an epitaxial layer will be formed around the set of side walls. Thereafter, the dummy gate will be replaced with a metal gate (e.g., an aluminum or tungsten body having a high-k metal liner there-around).
Abstract:
Methods form devices by patterning a lower layer to form a fin, and forming a sacrificial gate along sidewalls of the fin. Such methods form a mask with cut openings on the sacrificial gate and remove sections of the fin and the sacrificial gate exposed through the cut openings to divide the fin into fin portions and create cut areas between the fin portions. Additionally, these methods remove the mask, epitaxially grow source/drains in the cut areas, replace the sacrificial gate with a gate conductor, and form a gate contact on the gate conductor over a center of the fin portions.
Abstract:
Devices and methods of growing unmerged epitaxy for fin field-effect transistor (FinFet) devices are provided. One method includes, for instance: obtaining a wafer having at least one source, at least one drain, and at least one fin; etching to expose at least a portion of the at least one fin; forming at least one sacrificial gate structure; and forming a first layer of an epitaxial growth on the at least one fin. One device includes, for instance: a wafer having at least one source, at least one drain, and at least one fin; a first layer of an epitaxial growth on the at least one fin; at least one second layer of an epitaxial growth superimposing the first layer of an epitaxial growth; and a first contact region over the at least one source and a second contact region over the at least one drain.
Abstract:
Structures for a passive device of an integrated circuits and associated fabrication methods. A semiconductor substrate having raised fins and an dielectric isolation layer between the fins is formed. An etch stop layer is formed over the dielectric isolation layer between fins of a passive device. An interlayer dielectric layer is formed over the fins and etch stop layer. The interlayer dielectric layer is selectively etched to form an opening for conductive contact to the fins, where the etch stop layer prevents etching of the dielectric isolation layer. A conductive contact is formed to contact the plurality of fins, with the conductive contact terminating at the etch stop layer.