Abstract:
Embodiments of the present invention provide a semiconductor structure for BEOL (back end of line) integration. A directed self assembly (DSA) material is deposited and annealed to form two distinct phase regions. One of the phase regions is selectively removed, and the remaining phase region serves as a mask for forming cavities in an underlying layer of metal and/or dielectric. The process is then repeated to form complex structures with patterns of metal separated by dielectric regions.
Abstract:
An improved semiconductor structure and methods of fabrication that provide improved transistor contacts in a semiconductor structure are provided. A first block mask is formed over a portion of the semiconductor structure. This first block mask covers at least a portion of at least one source/drain (s/d) contact location. An s/d capping layer is formed over the s/d contact locations that are not covered by the first block mask. This s/d capping layer is comprised of a first capping substance. Then, a second block mask is formed over the semiconductor structure. This second block mask exposes at least one gate location. A gate capping layer, which comprises a second capping substance, is removed from the exposed gate location(s). Then a metal contact layer is deposited, which forms a contact to both the s/d contact location(s) and the gate contact location(s).
Abstract:
Embodiments of the present invention provide an improved semiconductor structure and methods of fabrication that provide transistor contacts that are self-aligned in two dimensions. Two different capping layers are used, each being comprised of a different material. The two capping layers are selectively etchable to each other. One capping layer is used for gate coverage while the other capping layer is used for source/drain coverage. Selective etch processes open the desired gates and source/drains, while block masks are used to cover elements that are not part of the connection scheme. A metallization line (layer) is deposited, making contact with the open elements to provide electrical connectivity between them.
Abstract:
Embodiments of the present invention provide a semiconductor structure for BEOL (back end of line) integration. A directed self assembly (DSA) material is deposited and annealed to form two distinct phase regions. One of the phase regions is selectively removed, and the remaining phase region serves as a mask for forming cavities in an underlying layer of metal and/or dielectric. The process is then repeated to form complex structures with patterns of metal separated by dielectric regions.
Abstract:
Embodiments of the present invention provide an improved semiconductor structure and methods of fabrication that provide transistor contacts that are self-aligned in two dimensions. Two different capping layers are used, each being comprised of a different material. The two capping layers are selectively etchable to each other. One capping layer is used for gate coverage while the other capping layer is used for source/drain coverage. Selective etch processes open the desired gates and source/drains, while block masks are used to cover elements that are not part of the connection scheme. A metallization line (layer) is deposited, making contact with the open elements to provide electrical connectivity between them.
Abstract:
Embodiments of the present invention provide a semiconductor structure for BEOL (back end of line) integration. A directed self assembly (DSA) material is deposited and annealed to form two distinct phase regions. One of the phase regions is selectively removed, and the remaining phase region serves as a mask for forming cavities in an underlying layer of metal and/or dielectric. The process is then repeated to form complex structures with patterns of metal separated by dielectric regions.
Abstract:
Embodiments of the present invention provide improved methods of contact formation. A self aligned contact scheme with reduced lithography requirements is disclosed. This reduces the risk of shorts between source/drains and gates, while providing improved circuit density. Cavities are formed adjacent to the gates, and a fill metal is deposited in the cavities to form contact strips. A patterning mask is then used to form smaller contacts by performing a partial metal recess of the contact strips.