Abstract:
Methodologies and an apparatus for enabling three-dimensional scatterometry to be used to measure a thickness of dielectric layers in semiconductor devices are provided. Embodiments include initiating optical critical dimension (OCD) scatterometry on a three-dimensional test structure formed on a wafer, the three-dimensional test structure comprising patterned copper (Cu) trenches with an ultra-low k (ULK) dielectric film formed over the patterned Cu trenches; and obtaining, by a processor, a thickness of the ULK dielectric film based on results of the OCD scatterometry.
Abstract:
A measurement method and system are presented for in-line measurements of one or more parameters of thin films in structures progressing on a production line. First measured data and second measured data are provided from multiple measurements sites on the thin film being measured, wherein the first measured data corresponds to first type measurements from a first selected set of a relatively small number of the measurement sites, and the second measured data corresponds to second type optical measurements from a second set of significantly higher number of the measurements sites. The first measured data is processed for determining at least one value of at least one parameter of the thin film in each of the measurement sites of said first set. Such at least one parameter value is utilized for interpreting the second measured data, thereby obtaining data indicative of distribution of values of said at least one parameter within said second set of measurement sites.
Abstract:
Approaches for providing a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. A previously deposited amorphous carbon layer can be removed from over a mandrel that has been previously formed on a subset of a substrate, such as using a photoresist. A pad hardmask can be formed over the mandrel on the subset of the substrate. This formation results in the subset of the substrate having the pad hardmask covering the mandrel thereon and the remainder of the substrate having the amorphous carbon layer covering the mandrel thereon. This amorphous carbon layer can be removed from over the mandrel on the remainder of the substrate, allowing a set of fins to be formed therein while the amorphous carbon layer keeps the set of fins from being formed in the portion of the substrate that it covers.
Abstract:
Methods and systems are provided for fabricating and measuring physical features of a semiconductor device structure. An exemplary method of fabricating a semiconductor device structure involves obtaining raw measurement data for a wafer of semiconductor material from a metrology tool and adjusting a measurement model utilized by a metrology tool based at least in part on the raw measurement data and a value for a design parameter. The wafer has that value for the design parameter and an attribute of the semiconductor device structure fabricated thereon, wherein the measurement model is utilized by the metrology tool to convert the raw measurement data to a measurement value for the attribute.
Abstract:
Methods and systems are provided for fabricating and measuring physical features of a semiconductor device structure. An exemplary method of fabricating a semiconductor device structure involves obtaining raw measurement data for a wafer of semiconductor material from a metrology tool and adjusting a measurement model utilized by a metrology tool based at least in part on the raw measurement data and a value for a design parameter. The wafer has that value for the design parameter and an attribute of the semiconductor device structure fabricated thereon, wherein the measurement model is utilized by the metrology tool to convert the raw measurement data to a measurement value for the attribute.
Abstract:
Various embodiments include computer-implemented methods, computer program products and systems for generating an integrated circuit (IC) library for use in a scatterometry analysis. In some cases, approaches include: obtaining chip design data about at least one IC chip; obtaining user input data about the at least one IC chip; and running an IC library defining program using the chip design data in its original format and the user input data in its original format, the running of the IC library defining program including: determining a process variation for the at least one IC chip based upon the chip design data and the user input data; converting the process variation into shape variation data; and providing the shape variation data in a text format to a scatterometry modeling program for use in the scatterometry analysis.