Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to smooth sidewall structures and methods of manufacture. The method includes: forming a plurality of mandrel structures; forming a first spacer material on each of the plurality of mandrel structures; forming a second spacer material over the first spacer material; and removing the first spacer material and the plurality of mandrel structures to form a sidewall structure having a sidewall smoothness greater than the plurality of mandrel structures.
Abstract:
Semiconductor structures and fabrication methods are provided having a bridging film which facilitates adherence of both an underlying layer of dielectric material and an overlying stress-inducing layer. The method includes, for instance, providing a layer of dielectric material, with at least one gate structure disposed therein, over a semiconductor substrate; providing a bridging film over the layer of dielectric material with the at least one gate structure; and providing a stress-inducing layer over the bridging film. The bridging film is selected to facilitate adherence of both the underlying layer of dielectric material and the overlying stress-inducing layer by, in part, forming a chemical bond with the layer of dielectric material, without forming a chemical bond with the stress-inducing layer.
Abstract:
Approaches for providing a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. A previously deposited amorphous carbon layer can be removed from over a mandrel that has been previously formed on a subset of a substrate, such as using a photoresist. A pad hardmask can be formed over the mandrel on the subset of the substrate. This formation results in the subset of the substrate having the pad hardmask covering the mandrel thereon and the remainder of the substrate having the amorphous carbon layer covering the mandrel thereon. This amorphous carbon layer can be removed from over the mandrel on the remainder of the substrate, allowing a set of fins to be formed therein while the amorphous carbon layer keeps the set of fins from being formed in the portion of the substrate that it covers.
Abstract:
Approaches for providing a substrate having a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. Specifically, the FinFET device comprises a finned substrate, and a planar metrology pad formed on the substrate adjacent the fins in a metrology measurement area of the FinFET device. Processing steps include forming a first hardmask over the substrate, forming a photoresist over a portion of the first hardmask in the metrology measurement area of the FinFET device, removing the first hardmask in an area adjacent the metrology measurement area remaining exposed following formation of the photoresist, patterning a set of openings in the substrate to form the set of fins in the FinFET device in the area adjacent the metrology measurement area, depositing an oxide layer over the FinFET device, and planarizing the FinFET device to form the planar metrology pad in the metrology measurement area.
Abstract:
The present disclosure generally relates to semiconductor devices and processing. The present disclosure also relates to isolation structures formed in active regions, more particularly, diffusion break structures in an active semiconductor layer of a semiconductor device. The present disclosure also relates to methods of forming such structures and replacement metal gate processes.
Abstract:
Structures for a field-effect transistor and methods of forming a structure for a field-effect transistor. A gate structure is arranged over a channel region of a semiconductor body. A first source/drain region is coupled to a first portion of the semiconductor body, and a second source/drain region is located in a second portion the semiconductor body. The first source/drain region includes an epitaxial semiconductor layer containing a first concentration of a dopant. The second source/drain region contains a second concentration of the dopant. The channel region is positioned in the semiconductor body between the first source/drain region and the second source/drain region.
Abstract:
A method, FET structure and gate cut structure are disclosed. The method forms a gate cut opening in a dummy gate in a gate material layer, the gate cut opening extending into a space separating a semiconductor structures on a substrate under the gate material layer. A source/drain region is formed on the semiconductor structure(s), and a gate cut isolation is formed in the gate cut opening. The gate cut isolation may include an oxide body. During forming of a contact, a mask has a portion covering an upper end of the gate cut isolation to protect it. The gate cut structure includes a gate cut isolation including a nitride liner contacting the end of the first metal gate conductor and the end of the second metal gate conductor, and an oxide body inside the nitride liner.
Abstract:
A method, FET structure and gate cut structure are disclosed. The method forms a gate cut opening in a dummy gate in a gate material layer, the gate cut opening extending into a space separating a semiconductor structures on a substrate under the gate material layer. A source/drain region is formed on the semiconductor structure(s), and a gate cut isolation is formed in the gate cut opening. The gate cut isolation may include an oxide body. During forming of a contact, a mask has a portion covering an upper end of the gate cut isolation to protect it. The gate cut structure includes a gate cut isolation including a nitride liner contacting the end of the first metal gate conductor and the end of the second metal gate conductor, and an oxide body inside the nitride liner.
Abstract:
This disclosure is directed to an integrated circuit (IC) structure. The IC structure may include a semiconductor structure including two source/drain regions; a metal gate positioned on the semiconductor structure adjacent to and between the source/drain regions; a metal cap with a different metal composition than the metal gate and having a thickness in the range of approximately 0.5 nanometer (nm) to approximately 5 nm positioned on the metal gate; a first dielectric cap layer positioned above the semiconductor structure; an inter-layer dielectric (ILD) positioned above the semiconductor structure and laterally abutting both the metal cap and the metal gate, wherein an upper surface of the ILD has a greater height above the semiconductor structure than an upper surface of the metal gate; a second dielectric cap layer positioned on the ILD and above the metal cap; and a contact on and in electrical contact with the metal cap.
Abstract:
Structures that include a metal-insulator-metal (MIM) capacitor and methods for fabricating a structure that includes a MIM capacitor. The MIM capacitor includes a first electrode, a second electrode, and a third electrode. A conductive via is arranged in a via opening extending in a vertical direction through at least the first electrode. The first electrode has a surface arranged inside the via opening in a plane transverse to the vertical direction, and the conductive via contacts the first electrode over an area of the surface.