Abstract:
A method to detect and mitigate sensor degradation in an automobile system includes: collecting output signal data from at least one of a sensor and an actuator which is outputting the signal data related to operational parameters of a vehicle system; placing the sensor or the actuator in communication with a fault box used to purposely corrupt the output signal data; analyzing patterns of the output signal data compared to signal data from a nominal operating sensor or actuator using an artificial intelligence program; identifying when a statistical range of the patterns exceeds a first threshold level; and modifying a control signal to change the operational parameters of the vehicle system.
Abstract:
A propulsion system, control system, and method are provided for optimizing fuel economy, which use model predictive control systems to generate first and second predicted actual axle torques and first and second predicted actual fuel consumption rates based on first and second sets of possible command values, respectively. The sets of possible command values include commanded engine output torques and commanded transmission ratios. First and second costs are determined for the first and second sets of possible command values, respectively, based on a first predetermined weighting value, a second predetermined weighting value, the first and second predicted actual axle torques, respectively, the first and second predicted actual fuel consumption rates, respectively, an axle torque requested, an engine output torque requested, a transmission ratio requested, and a fuel consumption rate requested. One of the first and second sets of possible command values is selected and set based on the lower cost.
Abstract:
A powertrain control system for a motor vehicle having a transmission and an engine includes an axle torque controller that determines a desired engine torque and a desired speed ratio from a plurality of inputs, an engine controller that determines a commanded engine torque based on the desired engine torque, wherein the commanded engine torque is used to control the engine to produce an actual engine torque, a transmission controller that determines a commanded gear ratio based on the desired gear ratio, wherein the commanded gear ratio is used to control the transmission to produce an actual gear ratio, and an estimator that determines an actual axle torque of the motor vehicle from the actual engine torque and the actual gear ratio. The plurality of inputs includes a desired axle torque, the actual axle torque, a desired fuel rate, an actual fuel rate.
Abstract:
A method for operating an internal combustion engine includes increasing engine drag torque, transitioning from a cylinder deactivation state to an all-cylinder state, and decreasing engine drag torque immediately subsequent to transitioning to the all-cylinder state.
Abstract:
A prediction module, based on a set of possible target values for M future times and a model of an engine, determines predicted torques of the engine for the M future times, respectively. M is an integer greater than one. A cost module determines a cost for the set of possible target values based on comparisons of the predicted torques for the M future times with engine torque requests for the M future times, respectively. A selection module, based on the cost, selects the set of possible target values from a group including the set of possible target values and N other sets of possible target values, wherein N is an integer greater than zero, and sets target values based on the selected set of possible target values. An actuator module controls an engine actuator based on a first one of the target values.
Abstract:
A control system includes a control module that receives a first request corresponding to a control value for at least one of a plurality of actuators, selectively receives a second request associated with a predicted future control value for at least one of the plurality of actuators, determines a target value for the actuator based on the first request if the second request was not received, and generates a reference signal representing the second request if the second request was received. The reference signal indicates at least one of a predicted increase in the control value and a predicted decrease in the control value. A model predictive control module receives the reference signal and adjusts one of the plurality of actuators associated with the predicted future control value based on the reference signal.
Abstract:
A method for operating a multi-mode powertrain system includes monitoring an operator request for tractive power, and arbitrating the operator request for tractive power with axle torque constraints and crankshaft torque constraints. An immediate tractive torque request and a predicted tractive torque request are determined based upon the arbitrated operator request for tractive power. The predicted tractive torque request is shaped based upon driveability torque constraints. Operation of torque-generative devices of the multi-mode powertrain system are controlled based upon the predicted tractive torque request and the driveability-shaped predicted tractive torque request.
Abstract:
A torque requesting module generates a first torque request for a spark ignition engine based on driver input. A torque conversion module converts the first torque request into a second torque request. A setpoint control module generates setpoints for the spark ignition engine based on the second torque request. A vacuum requesting module requests an amount of vacuum within an intake manifold of the engine. The setpoint module selectively adjusts at least one of the setpoints based on the amount of vacuum requested. A model predictive control (MPC) module: identifies sets of possible target values based on the setpoints; generates predicted parameters based on a model of the spark ignition engine and the sets of possible target values, respectively; selects one of the sets of possible target values based on the predicted parameters; and sets target values based on the possible target values of the selected one of the sets.
Abstract:
For an upshift of a transmission, a model predictive control (MPC) module sets target intake and exhaust valve timings for changes in a torque request that occur during the upshift. A phaser actuator module controls intake valve phasing of an engine based on the target intake valve timing and controls exhaust valve phasing based on the target exhaust valve timing.
Abstract:
A powertrain system includes an internal combustion engine rotatably coupled to a non-combustion torque machine and a torque converter which is rotatably coupled to an input member of a transmission. A method for operating the powertrain system includes operating the torque converter in a controlled slip operating state and controlling a torque converter clutch capacity in response to a driver requested braking torque. Target torque outputs from the engine and from the torque machine are determined in response to the driver requested braking torque subjected to a time delay. A torque modifier for the torque machine is determined in response to a torque converter clutch slip error. Torque output from the engine is controlled in response to the target torque output from the engine, and torque output from the torque machine is controlled in response to the target torque output and the torque modifier from the torque machine.