摘要:
A method of manufacturing a semiconductor device includes forming a layer over a substrate, and doping the layer with a dopant, after which the layer is laser thermal annealed. The layer can be a nitride, an oxide, or a polysilicon layer. The dopants can be arsenic, phosphorous, boron, or nitrogen. During the laser thermal annealing, certain portions of a surface of the semiconductor device are laser thermal annealed and other portions of a surface of the semiconductor device are not exposed. Also, the surface of the layer is smoother after the laser thermal annealing.
摘要:
A method of manufacturing a semiconductor device, including depositing a gate oxide film over a substrate and conditioning the deposited gate oxide film using laser thermal annealing in a single process chamber, and depositing a gate electrode film over the conditioned gate oxide film.
摘要:
A process for fabrication of a semiconductor device including a modified ONO structure, including forming the modified ONO structure by providing a semiconductor substrate; forming a first oxide layer on the semiconductor substrate; depositing a layer comprising a high-K dielectric material on the first oxide layer; and forming a top oxide layer on the layer comprising a high-K dielectric material. The semiconductor device may be, e.g., a MIRRORBIT™ two-bit EEPROM device or a floating gate flash device including a modified ONO structure.
摘要:
A device and method for manufacturing thereof for a MirrorBit® Flash memory includes providing a semiconductor substrate and successively depositing a first insulating layer, a charge-trapping layer, and a second insulating layer. First and second bitlines are implanted and wordlines are formed before completing the memory. Spacers are formed between the wordlines and an inter-layer dielectric layer is formed over the wordlines. One or more of the second insulating layer, wordlines, spacers, and inter-layer dielectric layers are deuterated, replacing hydrogen bonds with deuterium, thus improving data retention and substantially reducing charge loss.
摘要:
A method of manufacturing a semiconductor device etches a feature on a substrate in accordance with a photoresist mask. The photoresist mask is removed by plasma etching. Laser thermal annealing is performed to vaporize polymer residue created during the stripping of the photoresist mask, and to repair damage to the substrate.
摘要:
A method of manufacturing an integrated circuit includes providing a semiconductor substrate and depositing a charge-trapping dielectric layer and a gate dielectric layer over the semiconductor substrate. Bitlines are implanted closely in the semiconductor substrate and annealed using a rapid thermal anneal. Wordlines and gates are formed and source/drain junctions are implanted in the semiconductor substrate. An interlayer dielectric layer is deposited and the integrated circuit completed.
摘要:
The present invention provides a process for saliciding word lines in a virtual ground array flash memory device without causing shorting between bit lines. According to one aspect of the invention, saliciding takes place prior to patterning one or more layers of a memory cell stack. The unpatterned layers protect the substrate between word lines from becoming salicided. The invention provides virtual ground array flash memory devices with doped and salicided word lines, but no shorting between bit lines, even in virtual ground arrays where there are no oxide island isolation regions between word lines. Potential advantages of such structures include reduced size, reduced number of processing steps, and reduced exposure to high temperature cycling.
摘要:
A method of manufacturing an integrated circuit includes a semiconductor substrate having bitlines under a charge-trapping material over a core region and a gate insulator material over a periphery region. A wordline-gate material, a hard mask, and a first photoresist are deposited and patterned over the core region while covering the periphery region. After removing the first photoresist, wordlines are formed from the wordline-gate material in the core region. An anti-reflective coating and a second photoresist are deposited and patterned over the periphery region and covering the core region. The anti-reflective coating is removable without damaging the charge-trapping material. After removing the second photoresist and the anti-reflective coating, gates are formed from the wordline-gate material in the periphery region and the integrated circuit completed.
摘要:
One aspect of the present invention relates to a method of forming a non-volatile semiconductor memory device, involving forming a charge trapping dielectric over a substrate, the substrate having a core region and a periphery region; forming a first set of memory cell gates over the charge trapping dielectric in the core region; forming a conformal insulation material layer around the first set of memory cell gates; and forming a second set of memory cell gates in the core region, wherein each memory cell gate of the second set of memory cell gates is adjacent to at least one memory cell gate of the first set of memory cell gates, each memory cell gate of the first set of memory cell gates is adjacent at least one memory cell gate of the second set of memory cell gates, and the conformal insulation material layer is positioned between each adjacent memory cell gate.
摘要:
In one embodiment, a method of making a gate stack semiconductor device is disclosed. The method comprises the steps of: forming a tunnel oxide layer over a p-type semiconductor substrate; forming a floating gate over the tunnel oxide layer by first forming an n-type polysilicon layer and subjecting the n-type polysilicon layer to nitridation, and then forming a p-type polysilicon layer over the nitridated n-type polysilicon layer; and forming a high-K insulating layer over the p-type polysilicon layer.