Abstract:
An SOI substrate manufacturing method and an SOI substrate are provided, where the method includes: forming a patterned etch-stop layer in an oxide layer of a first silicon substrate, bonding a surface, having the patterned etch-stop layer (130), of the first silicon substrate with a surface of a second silicon substrate, and peeling off a part of the first silicon substrate to form a patterned SOI substrate.
Abstract:
A semiconductor device and a method for producing a semiconductor device are disclosed. The semiconductor device includes: a first silicon layer; a first dielectric layer, located on the first silicon layer, where the first dielectric layer includes a window, and a bottom horizontal size of the window of the first dielectric layer is not greater than 20 nm; and a III-V semiconductor layer, located on the first dielectric layer and in the window of the first dielectric layer, and connected to the first silicon layer in the window of the first dielectric layer. A III-V semiconductor material of the semiconductor device has no threading dislocations, and therefore has relatively high performance.
Abstract:
This application relates to the field of wireless communications technologies, and discloses an encoding method and apparatus, to improve accuracy of reliability calculation and ordering for polarized channels. The method includes: obtaining a first sequence used to encode K to-be-encoded bits, where the first sequence includes sequence numbers of N polarized channels, the first sequence is same as a second sequence or a subset of the second sequence, the second sequence comprises sequence numbers of Nmax polarized channels, and the second sequence is the sequence shown in Sequence Q11 or Table Q11, K is a positive integer, N is a positive integer power of 2, n is equal to or greater than 5, K≤N, Nmax=1024; selecting sequence numbers of K polarized channels from the first sequence; and performing polar code encoding on K the to-be-encoded bits based on the selected sequence numbers of the K polarized channels.
Abstract:
In an information sharing method, a communication apparatus obtains first information sharing level of a first device, and sends first shared information corresponding to the first information sharing level to a second device. The apparatus obtains a second information sharing level of the first device, and sends second shared information corresponding to the second information sharing level to the second device. The second information sharing level is different from the first information sharing level, the second shared information is not exactly the same as the first shared information, and the first shared information and the second shared information are for model training.
Abstract:
This application provides a scheduling method and apparatus. The method includes: a network device uses a scheduling model applicable to K users for one or more times, and determines a scheduled terminal device based on scheduling weights output by the scheduling model for one or more times. Each time the scheduling model is used, status information of K terminal devices in n to-be-scheduled terminal devices is input to the scheduling model, and the scheduling model outputs scheduling weights respectively corresponding to the K terminal devices, where K is an integer greater than 1, and n is an integer greater than K. Therefore, regardless of a quantity of to-be-scheduled terminal devices in a communication system, the network device may reuse the scheduling model without re-establishing a scheduling model, so that the scheduling model is expandable and applicable to scenarios in which quantities of to-be-scheduled terminal devices are different.
Abstract:
This application relates to the field of wireless communications technologies, and discloses an encoding method and apparatus, to improve accuracy of reliability calculation and ordering for polarized channels. The method includes: obtaining a first sequence used to encode K to-be-encoded bits, where the first sequence includes sequence numbers of N polarized channels, the first sequence is same as a second sequence or a subset of the second sequence, the second sequence comprises sequence numbers of Nmax polarized channels, and the second sequence is the sequence shown in Sequence Q11 or Table Q11, K is a positive integer, N is a positive integer power of 2, n is equal to or greater than 5, K≤N, Nmax=1024; selecting sequence numbers of K polarized channels from the first sequence; and performing polar code encoding on K the to-be-encoded bits based on the selected sequence numbers of the K polarized channels.
Abstract:
A polar code transmission method and apparatus, the method including performing, by a transmit end, polar code encoding on at least one of to-be-encoded bit sequences U to generate an encoded sequence, wherein a length of U is N, and scrambling and interleaving, by the transmit end, the encoded sequence by using a scrambling sequence SX and an interleaving matrix PX.
Abstract:
Example polar coding methods and apparatus are described. One example method includes determining a sequence used to code to-be-coded bits. Polar coding is performed on the to-be-coded bits by using the sequence to obtain coded bits. The sequence is used to represent a reliability order of N polarized channels, N is a mother code length of a polar code, and N is a positive integer power of 2.
Abstract:
This application relates to the field of wireless communications technologies, and discloses an encoding method and apparatus, to improve accuracy of reliability calculation and ordering for polarized channels. The method includes: obtaining a first sequence used to encode K to-be-encoded bits, where the first sequence includes sequence numbers of N polarized channels, the first sequence is same as a second sequence or a subset of the second sequence, the second sequence comprises sequence numbers of Nmax, polarized channels, and the second sequence is the sequence shown in Sequence Q11 or Table Q11, K is a positive integer, N is a positive integer power of 2, n is equal to or greater than 5, K≤N, Nmax=1024; selecting sequence numbers of K polarized channels from the first sequence; and performing polar code encoding on K the to-be-encoded bits based on the selected sequence numbers of the K polarized channels.
Abstract:
Embodiments of the application provide a method for transmitting data in a wireless communication network. A device of the network receives a bit sequence of K information bits. The device polar codes the bit sequence to obtain a first encoded sequence, wherein a length of the first encoded sequence is N, and N is greater than or equal to K. The device block interleaves the first encoded sequence to obtain an interleaved bit sequence. The device determines a transmission code rate R. When the transmission code rate R is less than the code rate threshold, the device outputs a second bit sequence. The length of the second bit sequence is M, M is smaller than N. The second bit sequence is punctured from the interleaved bit sequence by removing (N−M) bits from beginning of the interleaved bit sequence.