Abstract:
A method for controlling intake and exhaust valves of an engine includes: controlling, by an intake continuous variable valve timing (CVVT) device and an exhaust CVVT device, opening and closing timings of the intake valve and exhaust valves; determining, by a controller, a target opening duration of the intake and exhaust valves based on an engine load and an engine speed; modifying, by an intake continuous variable valve duration (CVVD) device and by an exhaust CVVD device, current opening and closing timings of the intake valve and/or exhaust valve based on the target opening duration; and advancing or retarding, by the intake and/or exhaust CVVD devices, the current opening timing of the intake and exhaust valves while simultaneously retarding or advancing the current closing timing of the intake and exhaust valve by a predetermined value based on the target opening duration.
Abstract:
The method for controlling valve timing of an engine includes: classifying control regions; applying a maximum duration to an intake valve and a long duration to an exhaust valve in a first control region; advancing Intake Valve Closing timing, applying the long duration to the exhaust valve, and maintaining a maximum valve overlap in a second control region; applying the long duration to the exhaust valve and advancing the IVC timing and Exhaust Valve Closing timing in a third control region; applying a short duration to the exhaust valve and controlling the EVC timing in a fourth control region; controlling a throttle valve, applying the short duration to the exhaust valve, and retarding Exhaust Valve Opening timing in a fifth control region; and controlling the throttle valve and the EVC timing, applying the long duration to the exhaust valve, advancing the EVO timing in a sixth control region.
Abstract:
A control method using a continuous variable valve duration apparatus may use a continuous variable valve duration apparatus including a wheel being mounted on a camshaft and having a wheel key to control duration of an intake valve of an engine, a cam device having a cam and a cam key, being adapted that the camshaft is inserted thereinto, and being disposed to can vary relative phase of the cam with respect to the camshaft, an inner bracket being connected with the wheel key and the cam key, a slider housing being adapted that the inner bracket is rotatably inserted thereinto and being disposed to can move vertically with respect to the engine, a controller varying a position of the slider housing to adjust rotation center of the inner bracket, and guide device guiding motion of the sliding housing.
Abstract:
A method for controlling valve timing of continuous variable valve duration engine may include continuous variable valve duration (CVVD) device and continuous variable valve timing (CVVT) device including determining target intake valve open (IVO) timing, target intake valve close (IVC) timing, target exhaust valve open (EVO) timing and target exhaust valve close (EVC) timing; determining target intake CVVD, target exhaust CVVD, target intake CVVT and target exhaust CVVT to satisfy the target IVO, IVC, EVO, and EVC timings; performing feedback control of the CVVD by learning minimum value of the CVVD and maximum value of the CVVD; performing feedback control of the CVVT based on profile information of the valve; and determining real IVO timing, real IVC timing, real EVO timing, and real EVC timing based on the feedback control of the CVVD and the feedback control of the CVVT.
Abstract:
A continuously variable valve lift apparatus may include a camshaft, a cam portion on which a cam is formed and into which the camshaft is inserted, a slider housing into which the cam portion is rotatably inserted and disposed to be rotatable around a pivot shaft, a control portion configured to selectively rotate the slider housing around the pivot shaft, a rotation deliverer configured to transmit rotation of the camshaft to the cam portion, an output portion rotatable around the pivot shaft and on which a valve shoe is formed, and a valve device configured to be driven by the valve shoe.
Abstract:
A control method using a continuous variable duration apparatus provided to adjust opening duration of an intake valve of an engine may include: setting a desired deceleration speed when a vehicle starts decelerating, determining a pumping loss by the engine that is required for the desired deceleration speed, setting desired duration for the required pumping loss by the engine, and controlling duration of the intake valve on the basis of the set desired duration.
Abstract:
A system of controlling an engine includes: an engine including a combustion chamber, an intake valve, an ignition switch, and an exhaust valve; a dual continuously variable valve duration device to adjust an intake duration of the intake valve and an exhaust duration of the exhaust valve; and a controller for adjusting an ignition timing of the ignition switch, the intake duration, and the exhaust duration based on a driving condition of the vehicle. In particular, until the temperature of the exhaust gas reaches a predetermined temperature after the engine starts, the controller sets the ignition timing to an ignition timing within a predetermined ignition timing range, sets the intake duration of the intake valve to an intake duration within a predetermined intake duration range, and increases the exhaust duration of the exhaust valve to a limit exhaust duration according to the set intake duration.
Abstract:
The method for controlling valve timing for a turbo engine includes: classifying control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve and applying a long duration to an exhaust valve in a first control region; applying the maximum duration to the intake and applying the long duration to the exhaust valve in a second control region; applying the long duration to the exhaust valve and advancing an intake valve closing (IVC) timing in the third control region; applying a short duration to the exhaust valve and controlling the IVC timing in the fourth control region; controlling a wide open throttle valve (WOT) and applying the short duration to the exhaust valve in the fifth control region; controlling a WOT and controlling the IVC timing by applying the long duration to the exhaust valve in the sixth control region.
Abstract:
A continuous variable valve duration apparatus may include a camshaft, a cam device on which a cam is formed, of which the camshaft is inserted thereto and of which a relative phase angle with respect to the camshaft is variable, an internal bracket transmitting rotation of the camshaft to the cam device, a wheel housing in which the internal bracket is rotatably inserted and on which a guide groove parallel to the camshaft is formed, a control portion including a control shaft disposed parallel to the camshaft and inserted into the guide groove, and the control portion selectively rotating the control shaft for the relative position of the wheel housing with respect to the camshaft to be changed and a slider housing interposed between the control shaft and the guide groove.
Abstract:
The present disclosure provides a system and a method for controlling valve timing of a continuous variable valve duration engine. The method may include: classifying a plurality of control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve in a first control region; maintaining the maximum duration of the intake valve and controlling a valve overlap by using exhaust valve closing (EVC) timing in a second control region; advancing intake valve closing (IVC) timing in a third control region; controlling the IVC timing to be close to bottom dead center (BDC) in a fourth control region; controlling a throttle valve to be fully opened and generating a scavenging phenomenon in a fifth control region; and controlling the throttle valve to be fully opened and controlling the IVC timing to prevent knocking in a sixth control region.