摘要:
A method and system for determining a substrate type during a seasoning process is presented. An optical signal is acquired from a process in a plasma processing system, and the optical signal is compared to a pre-determined threshold value. Depending upon the comparison, the substrate type is determined to be of a correct type, or an incorrect type.
摘要:
Methods and structures for the fabrication of both thin film longitudinal and perpendicular write heads are disclosed. A unique feature of these write heads is the inclusion of layered return poles, which comprise alternating layers of 22/78 and 80/20 NiFe alloys. The alternating layers also vary in thickness, the 22/78 NiFe layers having a nominal thickness of 1500 angstroms and the 80/20 NiFe layers having a nominal thickness of about 75 angstroms. Head efficiency and signal to noise ratios are significantly improved in heads having layered return pole construction.
摘要:
A method and apparatus for integrating a stair notch and a gap bump at a pole tip in a write head is disclosed. A protective plated layer is formed over the bump to prevent the bump form being damaged during formation of the notch at the pole tip. The flux from the second pole outside of the track will be effectively channeled to the first pole piece under the alumina bump.
摘要:
A method and apparatus for integrating a stair notch and a gap bump at a pole tip in a write head is disclosed. A protective plated layer is formed over the bump to prevent the bump form being damaged during formation of the notch at the pole tip. The flux from the second pole outside of the track will be effectively channeled to the first pole piece under the alumina bump.
摘要:
One preferred method for use in making a magnetic write head with use of the resist channel shrinking solution includes the steps of forming a first pole piece layer of a first pole piece; forming a gap layer over the first pole piece layer; forming a patterned resist over the first pole piece layer and the gap layer; electroplating a first pedestal portion of a second pole piece over the gap layer within a channel of the patterned resist; forming an oxide layer over the first pedestal portion; applying the resist channel shrinking solution comprising the resist channel shrinking film and the corrosion inhibitors over the patterned resist; baking the resist channel shrinking solution over the patterned resist to thereby reduce a width of the channel; removing the resist channel shrinking solution; electroplating a second pedestal portion of the second pole piece within the reduced-width channel of the patterned resist; removing the patterned resist; and milling the structure. Advantageously, the oxide layer and the corrosion inhibitors of the resist channel shrinking solution reduce corrosion in the pole piece during the act of baking the resist channel shrinking solution.
摘要:
The present invention discloses a method for the production of sub-micron structures on magnetic materials using electron beam lithography. A subtractive process is disclosed wherein a portion of a magnetic material layer is removed from the substrate using conventional lithography, and the remaining portion of the magnetic material layer is patterned by e-beam lithography. A additive process is also disclosed wherein a thin magnetic seed layer is deposited on the substrate, a portion of which is removed by conventional lithography and replaced with a non-magnetic conducting layer. The remaining portion of magnetic seed layer is patterned by e-beam lithography and the final magnetic structure produced by electroplating.
摘要:
According to an embodiment of the present invention, a material processing systeme (1) including a process tool (10) and a process performance control system (100). The process performance control system (100) includes a process performance controller (55) coupled to the process tool (10), where the process performance controller (55) includes a process performance prediction model (110), a process recipe correction filter (120), a process controller (130), and process performance model correction algorithm (150). The process performance prediction model (110) is configured to receive tool data from a plurality of sensors coupled to process tool (10) and to predict process performance data. The process recipe correction filter (120) is coupled to the process performance prediction model (110) and configured to receive predicted process performance data and generate a process recipe correction for run-to-run process control. The process controller (130) is coupled to the process recipe correction filter (120) and is configured to update a process recipe according to the process recipe correction.