Abstract:
In one embodiment, a processor comprises: a plurality of processing engines including a first processing engine and a second processing engine to independently execute instructions; and a power controller including a performance state control logic to control a performance state of at least one of the processing engines, and a first logic to determine an average number of active processing engines over a first window, an estimated activity level of the processor for the first window, and adjust at least one of a window length at which the performance state control logic is to perform a performance state determination and at least one activity level threshold, based at least in part on a comparison of the estimated activity level and the average number of active processing engines. Other embodiments are described and claimed.
Abstract:
A method and apparatus for providing proactive current protection. In one embodiment, the method comprises: prior to transitioning to a new state for an integrated circuit (IC), calculating a sum of expected powers for a plurality of domains in the IC by calculating an expected current for each of the plurality of domains based on an individual domain frequency in the new state and multiplying the expected current with its associated voltage for each of the plurality of domains for the new state; comparing the sum to a power limit; and if the sum is greater than the power limit, then reducing the individual domain frequency associated with at least one domain in the plurality of domains to maintain the total instantaneous power of the IC below the power limit.
Abstract:
Techniques and mechanisms for transparently transitioning an interconnect fabric between a first frequency and a second frequency. In an embodiment, the fabric is coupled to an end point device via an asynchronous device. One or more nodes of the fabric operate in a first clock domain based on a clock signal, while the end point device operates in a different clock domain. Controller circuitry changes a frequency of the clock signal by stalling the clock signal throughout a first period of time which is greater than a duration of three cycles of a lower one of the first frequency or the second frequency. After the first period of time, cycling of the clock signal is provided at the second frequency. In another embodiment, the asynchronous device enables the frequency change without preventing communication with the end point device.
Abstract:
In one embodiment, a processor includes a plurality of cores, at least two of which may execute redundantly, a configuration register to store a first synchronization domain indicator to indicate that a first core and a second core are associated with a first synchronization domain, and a power controller having a synchronization circuit to cause a dynamic adjustment to a frequency of at least one of the first and second cores to cause these cores to operate at a common frequency, based at least in part on the first synchronization domain indicator. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor for demotion includes a plurality of cores to execute instructions and a demotion control circuit. The demotion control circuit is to: for each core of the plurality of cores, determine an average count of power state break events in the core; determine a sum of the average counts of the plurality of cores; determine whether the average count of a first core exceeds a first demotion threshold; determine whether the sum of the average counts of the plurality of cores exceeds a second demotion threshold; and in response to a determination that the average count of the first core exceeds the first demotion threshold and the sum of the average counts exceeds the second demotion threshold, perform a power state demotion of the first core. Other embodiments are described and claimed.
Abstract:
An apparatus is provided, where the apparatus includes a plurality of components; a first sensing system to measure first power consumed by first one or more components of the plurality of components; a second sensing system to measure second power consumed by the apparatus; an analog-to-digital converter (ADC) to generate an identification (ID) that is representative of the second power consumed by the apparatus; and a controller to allocate power budget to one or more components of the plurality of components, based on the measurement of the first power and the ID.
Abstract:
In one embodiment, a processor includes at least one core to execute instructions and a power controller coupled to the at least one core. The power controller may include a first logic to cause the at least one core to exit an idle state and enter into a maximum performance state for a first time duration, thereafter enter into an intermediate power state for a second time duration, and thereafter enter into a sustained performance state. Other embodiments are described and claimed.
Abstract:
A processor includes a plurality of cores, at least two of which may execute redundantly, a configuration register to store a first synchronization domain indicator to indicate that a first core and a second core are associated with a first synchronization domain, and a power controller having a synchronization circuit to cause a dynamic adjustment to a frequency of at least one of the first and second cores to cause these cores to operate at a common frequency, based at least in part on the first synchronization domain indicator.
Abstract:
A processor comprises multiple cores and power management control logic to determine (a) a preliminary frequency for each of the cores and (b) a maximum frequency, based on the preliminary frequencies. The power management control logic is also to determines a dynamic tuning frequency, based on the maximum frequency and a reduction factor. In response to the dynamic tuning frequency for a selected core being greater than the preliminary frequency for that core, the power management control logic is to set the core to a frequency that is at least equal to the dynamic tuning frequency. In response to the preliminary frequency for the selected core being greater than the dynamic tuning frequency for that core, the power management control logic is to set the core to a frequency that is at least equal to the preliminary frequency. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor for demotion includes a plurality of cores to execute instructions and a demotion control circuit. The demotion control circuit is to: for each core of the plurality of cores, determine an average count of power state break events in the core; determine a sum of the average counts of the plurality of cores; determine whether the average count of a first core exceeds a first demotion threshold; determine whether the sum of the average counts of the plurality of cores exceeds a second demotion threshold; and in response to a determination that the average count of the first core exceeds the first demotion threshold and the sum of the average counts exceeds the second demotion threshold, perform a power state demotion of the first core. Other embodiments are described and claimed.