Abstract:
A method of fabricating an electronic device includes the following steps. At least one first set and at least one second set of nanowires and pads are etched in an SOI layer of an SOI wafer. A first gate stack is formed that surrounds at least a portion of each of the first set of nanowires that serves as a channel region of a capacitor device. A second gate stack is formed that surrounds at least a portion of each of the second set of nanowires that serves as a channel region of a FET device. Source and drain regions of the FET device are selectively doped. A first silicide is formed on the source and drain regions of the capacitor device that extends at least to an edge of the first gate stack. A second silicide is formed on the source and drain regions of the FET device.
Abstract:
Hybrid nanowire FET and FinFET devices and methods for fabrication thereof are provided. In one aspect, a method for fabricating a CMOS circuit having a nanowire FET and a finFET includes the following steps. A wafer is provided having an active layer over a BOX. A first region of the active layer is thinned. An organic planarizing layer is deposited on the active layer. Nanowires and pads are etched in the first region of the active layer using a first hardmask. The nanowires are suspended over the BOX. Fins are etched in the second region of the active layer using a second hardmask. A first gate stack is formed that surrounds at least a portion of each of the nanowires. A second gate stack is formed covering at least a portion of each of the fins. An epitaxial material is grown on exposed portions of the nanowires, pads and fins.
Abstract:
Hybrid nanowire FET and FinFET devices and methods for fabrication thereof are provided. In one aspect, a method for fabricating a CMOS circuit having a nanowire FET and a finFET includes the following steps. A wafer is provided having an active layer over a BOX. A first region of the active layer is thinned. An organic planarizing layer is deposited on the active layer. Nanowires and pads are etched in the first region of the active layer using a first hardmask. The nanowires are suspended over the BOX. Fins are etched in the second region of the active layer using a second hardmask. A first gate stack is formed that surrounds at least a portion of each of the nanowires. A second gate stack is formed covering at least a portion of each of the fins. An epitaxial material is grown on exposed portions of the nanowires, pads and fins.
Abstract:
Techniques for trapping quasiparticles in superconductor devices are provided. A superconductor device can comprise a substrate layer. The superconductor device can further comprise a first superconductor layer composed of a first superconductor material, on a first surface of a substrate layer. The superconductor device can further comprise a trapping material buried in the first superconductor layer, wherein the trapping material is formulated to trap quasiparticles.
Abstract:
A field effect transistor including a dielectric layer on a substrate, a nano-structure material (NSM) layer on the dielectric layer, a source electrode and a drain electrode formed on the NSM layer, a gate dielectric formed on at least a portion of the NSM layer between the source electrode and the drain electrode, a T-shaped gate electrode formed between the source electrode and the drain electrode, where the NSM layer forms a channel of the FET, and a doping layer on the NSM layer extending at least from the sidewall of the source electrode to a first sidewall of the gate dielectric, and from a sidewall of the drain electrode to a second sidewall of the gate dielectric.
Abstract:
In one aspect, a method for placing carbon nanotubes on a dielectric includes: using DSA of a block copolymer to create a pattern in the placement guide layer on the dielectric which includes multiple trenches in the placement guide layer, wherein there is a first charge on sidewall and top surfaces of the trenches and a second charge on bottom surfaces of the trenches, and wherein the first charge is different from the second charge; and depositing a carbon nanotube solution onto the dielectric, wherein self-assembly of the deposited carbon nanotubes within the trenches occurs based on i) attractive forces between the first charge on the surfaces of the carbon nanotubes and the second charge on the bottom surfaces of the trenches and ii) repulsive forces between the first charge on the surfaces of the carbon nanotubes and the first charge on sidewall and top surfaces of the trenches.
Abstract:
Techniques for defining a damascene gate in nanowire FET devices are provided. In one aspect, a method of fabricating a FET device is provided including the following steps. A SOI wafer is provided having a SOI layer over a BOX. Nanowires and pads are patterned in the SOI layer in a ladder-like configuration. The BOX is recessed under the nanowires. A patternable dielectric dummy gate(s) is formed over the recessed BOX and surrounding a portion of each of the nanowires. A CMP stop layer is deposited over the dummy gate(s) and the source and drain regions. A dielectric film is deposited over the CMP stop layer. The dielectric film is planarized using CMP to expose the dummy gate(s). The dummy gate(s) is at least partially removed so as to release the nanowires in a channel region. The dummy gate(s) is replaced with a gate conductor material.
Abstract:
A two-step hydrogen anneal process has been developed for use in fabricating semiconductor nanowires for use in non-planar semiconductor devices. In the first part of the two-step hydrogen anneal process, which occurs prior to suspending a semiconductor nanowire, the initial roughness of at least the sidewalls of the semiconductor nanowire is reduced, while having at least the bottommost surface of the nanowire pinned to an uppermost surface of a substrate. After performing the first hydrogen anneal, the semiconductor nanowire is suspended and then a second hydrogen anneal is performed which further reduces the roughness of all exposed surfaces of the semiconductor nanowire and reshapes the semiconductor nanowire. By breaking the anneal into two steps, smaller semiconductor nanowires at a tight pitch survive the process and yield.