摘要:
A structure includes a semiconductor substrate, a semiconductor buffer layer disposed over the semiconductor substrate, an oxide layer disposed over the buffer layer, and a fin including a semiconductor material disposed over the oxide layer. The semiconductor material has an oxidation rate different from an oxidation rate of the buffer layer.
摘要:
A method for fabricating a multigate device includes forming a fin on a substrate of the multigate device, the fin being formed of a semiconductor material, growing a first conformal epitaxial layer directly on the fin and substrate, wherein the first conformal epitaxial layer is highly doped, growing a second conformal epitaxial layer directly on the first conformal epitaxial layer, wherein the second conformal epitaxial layer is highly doped, selectively removing a portion of second epitaxial layer to expose a portion of the first conformal epitaxial layer, selectively removing a portion of the first conformal epitaxial layer to expose a portion of the fin and thereby form a trench, and forming a gate within the trench.
摘要:
A method includes providing a structure including a substrate, a buffer layer formed on the substrate and a semiconductor layer formed on the buffer layer, etching the semiconductor layer so as to form a fin and exposing the buffer layer, etching the buffer layer such that a portion of the buffer layer, disposed under the fin, is exposed, and oxidizing the buffer layer and fin so as to form an oxide layer under the fin.
摘要:
A semiconductor structure containing a high mobility semiconductor channel material, i.e., a III-V semiconductor material, and asymmetrical source/drain regions located on the sidewalls of the high mobility semiconductor channel material is provided. The asymmetrical source/drain regions can aid in improving performance of the resultant device. The source region contains a source-side epitaxial doped semiconductor material, while the drain region contains a drain-side epitaxial doped semiconductor material and an underlying portion of the high mobility semiconductor channel material.
摘要:
Embodiments include a method for fabricating a semiconductor device and the resulting structure comprising forming a semi-insulating bottom barrier on a semiconductor substrate. A channel is formed on the bottom barrier. A semi-insulating layer is epitaxially formed on the bottom barrier, laterally adjacent to the channel. The semi-insulating layer is formed in such a way that stress is induced onto the channel. A CMOS transistor is formed on the channel.
摘要:
An approach to providing a barrier in a vertical field effect transistor with low effective mass channel materials wherein the forming of the barrier includes forming a first source/drain contact on a semiconductor substrate and forming a channel with a first channel layer on the first source/drain contact. The approach further includes forming the barrier on the first channel layer, and a second channel layer on the barrier followed by forming a second source/drain contact on the second channel layer.
摘要:
A semiconductor structure containing a high mobility semiconductor channel material, i.e., a III-V semiconductor material, and asymmetrical source/drain regions located on the sidewalls of the high mobility semiconductor channel material is provided. The asymmetrical source/drain regions can aid in improving performance of the resultant device. The source region contains a source-side epitaxial doped semiconductor material, while the drain region contains a drain-side epitaxial doped semiconductor material and an underlying portion of the high mobility semiconductor channel material.
摘要:
Embodiments include a method for fabricating a semiconductor device and the resulting structure comprising forming a semi-insulating bottom barrier on a semiconductor substrate. A channel is formed on the bottom barrier. A semi-insulating layer is epitaxially formed on the bottom barrier, laterally adjacent to the channel. The semi-insulating layer is formed in such a way that stress is induced onto the channel. A CMOS transistor is formed on the channel.
摘要:
Techniques for controlling short channel effects in III-V MOSFETs through the use of a halo-doped bottom (III-V) barrier layer are provided. In one aspect, a method of forming a MOSFET device is provided. The method includes the steps of: forming a III-V barrier layer on a substrate; forming a III-V channel layer on a side of the III-V barrier layer opposite the substrate, wherein the III-V barrier layer is configured to confine charge carriers in the MOSFET device to the III-V channel layer; forming a gate stack on a side of the III-V channel layer opposite the III-V barrier layer; and forming halo implants in the III-V barrier layer on opposite sides of the gate stack. A MOSFET device is also provided.
摘要:
An approach to providing a barrier in a vertical field effect transistor with low effective mass channel materials wherein the forming of the barrier includes forming a first source/drain contact on a semiconductor substrate and forming a channel with a first channel layer on the first source/drain contact. The approach further includes forming the barrier on the first channel layer, and a second channel layer on the barrier followed by forming a second source/drain contact on the second channel layer.