摘要:
A mechanism is provided for ratcheting a double strand molecule. The double strand molecule is driven into a Y-channel of a membrane by a first voltage pulse. The Y-channel includes a stem and branches, and the branches are connected to the stem at a junction. The double strand molecule is slowed at the junction of the Y-channel based on the first voltage pulse being weaker than a force required to break a base pair of the double strand molecule. The double strand molecule is split into a first single strand and a second single strand by driving the double strand molecule into the junction of the Y-channel at a second voltage pulse.
摘要:
A technique includes providing a nanodevice. A gate electrode structure has nanochannels with a first end connected to a first common trench and a second end connected to a second common trench. A gate electrode extends laterally as a continuous line on the gate electrode structure and is formed in each of the nanochannels. The gate electrode forms a separate nano-ring electrode around a partial circumference inside each of the nanochannels. The gate electrode is parallel to the first and second common trenches and is perpendicular to the nanochannels.
摘要:
A technique includes providing a nanodevice. A gate electrode structure has nanochannels with a first end connected to a first common trench and a second end connected to a second common trench. A gate electrode extends laterally as a continuous line on the gate electrode structure and is formed in each of the nanochannels. The gate electrode forms a separate nano-ring electrode around a partial circumference inside each of the nanochannels. The gate electrode is parallel to the first and second common trenches and is perpendicular to the nanochannels.
摘要:
A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
摘要:
A mechanism is provided for ratcheting a double strand molecule. The double strand molecule is driven into a Y-channel of a membrane by a first voltage pulse. The Y-channel includes a stem and branches, and the branches are connected to the stem at a junction. The double strand molecule is slowed at the junction of the Y-channel based on the first voltage pulse being weaker than a force required to break a base pair of the double strand molecule. The double strand molecule is split into a first single strand and a second single strand by driving the double strand molecule into the junction of the Y-channel at a second voltage pulse.
摘要:
A nanosensor for detecting molecule characteristics includes a membrane having an opening configured to permit a charged carbon nanotube to pass but to block a molecule attached to the carbon nanotube. The opening is filled with an electrolytic solution. An electric field generator is configured to generate an electric field relative to the opening to drive the charged carbon nanotubes through the opening. A sensor circuit is coupled to the electric field generator to sense current changes due to charged carbon nanotubes passing into the opening, and to bias the electric field generator to determine a critical voltage related to a force of separation between the carbon nanotube and the molecule.
摘要:
A gas capture system is configured to purify gas streams. The gas capture system includes a first capture system including a plurality of first chambers interconnected by a first path. Each first chamber includes a first adsorbent. The gas capture system further includes a second capture system including a plurality of second chambers interconnected by a second path. Each second chamber includes a second adsorbent. The gas capture system further includes a third path connecting each first chamber to the second path such that a first output of the first capture system is input into the second capture system. The gas capture system further includes a fourth path connecting each second chamber to the first path such that a second output of the second capture system is input into the first capture system.
摘要:
The present invention provides a nano-fluidic field effective device. The device includes a channel having a first side and a second side, a first set of electrodes adjacent to the first side, a second set of electrodes adjacent to the second side, a control unit for applying electric potentials to the electrodes and a fluid within the channel containing a charge molecule. The first set of electrodes is disposed such that application of electric potentials produces a spatially varying electric field that confines a charged molecule within a predetermined area of said channel. The second set of electrodes is disposed such that application of electric potentials relative to the electric potentials applied to the first set of electrodes creates an electric field that confines the charged molecule to an area away from the second side of the channel.
摘要:
A mechanism is provided for ratcheting a double strand molecule. The double strand molecule is driven into a Y-channel of a membrane by a first voltage pulse. The Y-channel includes a stem and branches, and the branches are connected to the stem at a junction. The double strand molecule is slowed at the junction of the Y-channel based on the first voltage pulse being weaker than a force required to break a base pair of the double strand molecule. The double strand molecule is split into a first single strand and a second single strand by driving the double strand molecule into the junction of the Y-channel at a second voltage pulse.
摘要:
A mechanism is provided for ratcheting a double strand molecule. The double strand molecule is driven into a Y-channel of a membrane by a first voltage pulse. The Y-channel includes a stem and branches, and the branches are connected to the stem at a junction. The double strand molecule is slowed at the junction of the Y-channel based on the first voltage pulse being weaker than a force required to break a base pair of the double strand molecule. The double strand molecule is split into a first single strand and a second single strand by driving the double strand molecule into the junction of the Y-channel at a second voltage pulse.