Abstract:
Embodiments relate to system and methods including a plurality of nonvolatile memory elements wherein sets of least two nonvolatile memory elements each share one select element for selecting one of the nonvolatile memory elements of a particular one of the sets of nonvolatile memory elements for a read operation or a program operation.
Abstract:
The disclosure relates to systems and methods for performing a word line address scan in a semiconductor memory. More specifically, the disclosure provides a system and method for performing three scans for testing address decoder and word line drive circuits. The first scan determines whether only one word line is selected. The second scan determines whether the word line rise time to a target voltage level is within a specified time. Finally, the third scan determines whether the correct word line was selected. The present disclosure may realize all three scans or a combination of the three scans.
Abstract:
The disclosure relates to an electronic memory system, and more specifically, to a system to emulate an electrically erasable programmable read-only memory, and a method to emulate an electrically erasable programmable read-only memory. According to an embodiment of the disclosure, a system to emulate an electrically erasable programmable read-only memory is provided, the system including a first memory section and a second memory section, wherein the first memory section comprises a plurality of storage locations configured to store data partitioned into a plurality of data segments and wherein the second memory section is configured to store information mapping a physical address of a data segment stored in the first memory section to a logical address of the data segment.
Abstract:
A circuitry comprising a syndrome generator configured to generate a syndrome based on a parity check matrix and a binary word comprising a first set of bits and a second set of bits is provided. For the first set of bits an error correction of correctable bit errors within the first set is provided by the parity check matrix and for the second set of bits an error detection of a detectable bit errors within the second set is provided by the parity check matrix.
Abstract:
An apparatus for correcting at least one bit error within a coded bit sequence includes an error syndrome generator and a bit error corrector. The error syndrome generator determines the error syndrome of a coded bit sequence derived by a multiplication of a check matrix with a coded bit sequence.