Abstract:
Hydroconversion of paraffin containing hydrocarbon feeds is effected over a supported Group VIII and Group VI metal containing catalyst also containing a hydrocracking suppressant such as a Group IB metal, wherein the catalyst is preferably prepared by fixing the Group IB metal on to the support prior to incorporating the Group VI metal on to the support.
Abstract:
This invention relates to pillared micas, which comprise an active metal selected from the group consisting of Pt, Cr, Pd, It, Rh and mixtures thereof, and a first modifier metal selected from the group consisting of Sn, Ga and mixtures thereof. The mica may also be modified with a second modifier metal selected from the group consisting of alkali metals, alkaline earth metals, or rare earth metals and mixtures thereof. This invention further relates to a process for preparing such a catalyst.
Abstract:
Microporous materials of low acidity useful as sorbents and catalytic supports have been produced by pillaring tetrasilicic mica with silica polyoxocations generated by hydrolysis of organosilane precursors. Calcination at an intermediate temperature followed by washing of the solid with water is important in producing highly microporous material.
Abstract:
A layered oxide containing vanadium together with phosphorus or arsenic and an organic group may be prepared which has a unique layered structure of the formula: VORAO.sub.3.nS or VOROAO.sub.3.nS where A is phosphorus or arsenic, S is a solvent molecule, R is an unsubstituted or alkyl-, alkoxy- or aryl-substituted alkyl or aryl group, and n is zero or a positive number. These layered compounds are characterized in that the vanadium is substantially in a 4+ oxidation state and is present in an amount such that the molar ratio of A:V ranges from 0.8 to 1.2 throughout the oxide. Also the R groups are covalently bound to an A atom in the vanadium oxide layer directly through either carbon or oxygen atoms.
Abstract:
A novel electrochemical cell is disclosed which contains an alkali metal anode, a solid cathode, and an electrolyte containing one or more closoborane and/or closocarborane compounds in aprotic solvent. Preferred cells are those containing lithium anodes, chalcogenide cathodes and electrolytes containing one or more closoborane compounds in aprotic solvent with a chelating agent.
Abstract:
A cyclic process for selectively separating hydrogen sulfide from a gas mixture including CO2 is operated by contacting the gas mixture under sorption conditions with a non-aqueous sorbent comprising a basic non-protogenic nitrogenous compound to react the H2S with the basic compound so that the H2S can be sorbed by the compound. The compound containing the sorbed H2S can then be subjected to desorption conditions by which the H2S is desorbed and the sorbent readied for another sorption step in the cycle. The basic nitrogenous compound can be carried on a porous solid sorbent, e.g., a solid oxide such as alumina, silica, silica-alumina, zeolites, or a mesoporous and/or macroporous solid oxide. The process may be operated using a pressure swing, temperature swing, partial pressure swing, purge displacement, or a combination thereof between the sorption and desorption portions of the cycle, preferably in a rapid cycle operation.
Abstract:
A cyclic process for selectively separating hydrogen sulfide from a gas mixture including CO2 is operated by contacting the gas mixture under sorption conditions with a non-aqueous sorbent comprising a basic non-protogenic nitrogenous compound to react the H2S with the basic compound so that the H2S can be sorbed by the compound. The compound containing the sorbed H2S can then be subjected to desorption conditions by which the H2S is desorbed and the sorbent readied for another sorption step in the cycle. The basic nitrogenous compound can be carried on a porous solid sorbent, e.g., a solid oxide such as alumina, silica, silica-alumina, zeolites, or a mesoporous and/or macroporous solid oxide. The process may be operated using a pressure swing, temperature swing, partial pressure swing, purge displacement, or a combination thereof between the sorption and desorption portions of the cycle, preferably in a rapid cycle operation.
Abstract:
The invention provides low metal content molecular sieve catalyst compositions, processes for making such catalysts, and processes for using such catalysts in the conversion of an oxygenate into one or more light olefins. Preferably, the catalyst composition comprises a matrix material having a low metal content. By utilizing matrix materials having low metal contents, the amount of metal-catalyzed side reaction byproducts formed in a reaction system, particularly in an oxygenate-to-olefin reaction system, can be advantageously reduced.
Abstract:
The present invention provides for microporous ceramic materials having a surface area in excess of 50 m.sup.2 /gm and an open microporous cell structure wherein the micropores have a mean width of less than 20 Angstroms and wherein said microporous structure comprises a volume of greater than about 0.015 cm.sup.3 /gm of the ceramic. The invention also provides for a preceramic composite intermediate composition comprising a mixture of a ceramic precursor and finely divided particles comprising a non-silicon containing ceramic, carbon, or an inorganic compound having a decomposition temperature in excess of 400.degree. C., whose pyrolysis product in inert atmosphere or in an ammonia atmosphere at temperatures of up to less than about 1100.degree. C. gives rise to the microporous ceramics of the invention. Also provided is a process for the preparation of the microporous ceramics of the invention involving pyrolysis of the ceramic intermediate under controlled conditions of heating up to temperatures of less than 1100.degree. C. to form a microporous ceramic product.
Abstract:
The present invention is directed to a novel catalyst composition and its use in the dehydrogenation of paraffins to olefins. The catalyst comprises an alloy of a Group VIII noble metal and a metal selected from the group consisting of zinc and gallium on a support selected from the group consisting of silica, zinc oxide modified silica and zinc oxide modified silica-pillared clays when said alloy is a zinc alloy, and silica, gallium oxide modified silica and gallium oxide modified silica-pillared clays when said alloy is a gallium alloy. The instant catalyst is an active and selective catalyst for the catalytic dehydrogenation of paraffins to olefins, especially gaseous paraffins, having the added benefit of retaining high activity and selectivity even following repeated regeneration by calcination in oxygen containing gas at temperatures of 450.degree. C. to 650.degree. C., preferably 450.degree. C. to 500.degree. C.