Abstract:
A submount is used to mount a diode between two metal areas on the upper surface of a substrate. One of the areas is connected to a metal plate at the lower surface of the substrate through a via. The submount is clamped between two metal sheets. The top metal sheet has a through-hole for anchoring and self-aligning the diode. The electrodes of the diode are each coupled to one of the clamping metal sheets. Clamping metals provide pressure contact without soldering to the contact. But soldering can be alternatively used to enhance product reliability. Either the top metal sheet or the bottom metal sheet can be fully or selectively coating of solder for batch soldering at the contact point upon heating. The large metal plates and the large metal clamping sheets provide good heat sink and speedy soldering.
Abstract:
One or more LED panel is used as a light source of a light projector. The LEDs are mounted on a panel and arranged as a matrix array. The light emitted from the LEDs are reflected by a reflecting cup. The LEDs are connected to two separate metal parts each connected the two electrodes of the LEDs. The spaces between the LEDs are utilized for light passage.
Abstract:
The soldering pads on metal contacts for connection to the electrodes of a semiconductor diode chip are surrounded with a coating of insulating material to prevent the spreading of the molten solder, which may cause misalignment of the chip with respect to the package.
Abstract:
Flat metal strips are used to make connections to a laser diode so that the interconnections are parallel to the surface of the semiconductor device and the structure has a lower profile than a wire-bonded package. The contacts can be made with conducting glue or hard pressed by a lid before sealing with glue.
Abstract:
An LED package with an extended top electrode and an extended bottom electrode is made from a single metal sheet, one manufacturing process embodiment includes: preparing a piece of single metal sheet, forming a first metal and a coplanar second metal, mounting an LED on an inner end of the first metal, wire-bonding top electrode to an inner end of the second metal, encapsulating at least the LED and the bonding wire with a protection glue, bending an outer end of the first metal upward twice 90 degrees to form a top flat as an extended top electrode of the package, and bending an outer end of the second metal downward twice 90 degrees to form a bottom flat as an extended bottom electrode of the package.
Abstract:
A light emitting device with a top electrode and a bottom electrode is pushed by a plug to make contacts with either an upper metal plate or a lower metal plate each serving as one of the leads for an electrode of the light emitting devices. The plug is inserted through an opening larger than the light emitting device in the metal plate not in contact with the light emitting device but serving as another lead for the light emitting device. The plug is locked in place by means of threaded screw heads, snug-fit, snap-on buttons or an elastic sleeve. Thus, the light emitting device can be easily replaced without any wire bonding. A plurality of the light unit can be sandwiched between the upper metal plate and the lower metal plate.
Abstract:
The leads of a light emitting diode are made coaxial. The inner lead protrudes lower than the outer lead. The package is inserted into a spongy display panel for power supply. The display panel has three layers: a lower conducting layer for contacting said inner lead and a top conducting layer for contacting said outer layer, and an insulating layer between the top and the bottom layer. For LED with a bottom electrode and a top electrode, the LED can be mounted on the planar tops of the inner lead and the top electrode wire bonded to the outer lead, or the LED can be mounted on the side surface of the inner lead and the top electrode wire bonded to the outer lead. For LED with two bottom electrode, the LED electrodes can straddle over the planar tops of the inner lead and the outer lead, or the LED electrodes can straddle over the telescopic side surfaces of the two leads.
Abstract:
A light emitting device with a top electrode and a bottom electrode is pushed by a plug to make contacts with either an upper metal plate or a lower metal plate each serving as one of the leads for an electrode of the light emitting devices. The plug is inserted through an opening larger than the light emitting device in the metal plate not in contact with the light emitting device but serving as another lead for the light emitting device. The plug is locked in place by means of threaded screw heads, snug-fit, snap-on buttons or an elastic sleeve. Thus, the light emitting device can be easily replaced without any wire bonding. A plurality of the light unit can be sandwiched between the upper metal plate and the lower metal plate.
Abstract:
A supporting frame is used to solidly bridge to the two metallic contacts of a surface mount diode chip. Any bending or twisting stress between the two contacts is borne by the supporting frame instead of the diode chip. Otherwise the stress may damage the diode chip wherein said supporting forms a cantilever over said first metallic contact and the overhanging end of the cantilever is glued to said second metallic contact.
Abstract:
The electrodes of a light emitting diode (LED) is coupled to the terminals of a package with solderless pressure contacts. Each package is housed in a module with a bed on which the bottom electrode of the LED rests, and a pressure plate which is coupled to the top electrode of the LED. The pressure plate slides along four vertical posts to exert pressure to an LED package against a bed to form solderless pressure contacts. A plurality of LED packages can be lined up in a row to form a light strip, with the top pressure plate extended to form the bed of an adjacent module. A plurality of LED packages can also be arranged a matrix array display panel, where a plurality of lower terminals rests on one row of common bed of a number of parallel horizontal common beds, and where a plurality of upper terminals are pressed under a column of parallel vertical common pressure plates, so that any individual LED at the cross-point of a common bed and a common pressure can be randomly accessed.