Abstract:
In one embodiment of an invention concerning liquid crystal display devices, a first pixel electrode of a thin film transistor (TFT) array substrate may overlap a slit of a second pixel electrode of the TFT array substrate but not overlap another slit of the second pixel electrode. This may help induce a multi-domain electric field without having to precisely position a common electrode of a color filter substrate and the TFT array substrate. This may prevent position errors, enhance display quality, produce a wider viewing angle, and lower color shift sometimes associated with conventional liquid crystal display devices and methods.
Abstract:
A chip with beveled edges suitable for adhering onto a surface of a die pad by an adhesive material. The chip has an active surface and a corresponding back surface, wherein the active surface has beveled edges. The back surface of the chip is adhered onto the surface of the die pad by the adhesive material.
Abstract:
The invention is directed to a method for checking a die seal ring on a layout. The method comprises steps of receiving a digital database of a layout corresponding to at least a device with a text information corresponding to the layout. Tape-out information corresponding to the layout is received. A checking process is performed according to the digital database of the layout and the tape-out information and, meanwhile, a mask design procedure for designing a mask pattern corresponding to the layout is performed by using the digital database of the layout, the text information and the tape-out information. A result of the checking process is recorded in an inspection table corresponding to the layout.
Abstract:
A liquid crystal (LC) display panel including a lower substrate with pixel structures, an upper substrate, and an LC layer is provided. Each of the pixel structures includes a transistor and a pixel electrode. The pixel electrode includes first and second pixel electrodes insulated from each other, respectively including a first pattern and a second pattern that different and complementary to each other. Each of the first pixel electrode and the second pixel electrode has at least a trunk with a width smaller than or equal to 10 microns and a plurality of branches. The LC layer is positioned between the upper and the lower substrates and includes a plurality of LC molecules and a plurality of polymers, which are formed on surfaces of at least one of the upper and the lower substrates to cause the plurality of LC molecules to have a pretilt angle.
Abstract:
An image sensor module including a substrate, an image signal processor, a supporting board, an image sensor chip and a cover is provided. A concavity is located on a surface of the substrate. The image signal processor is disposed in the concavity e, and is electrically connected to the substrate. The supporting board is disposed on the surface of the substrate and covers the concavity. The image sensor chip is disposed on the supporting board and electrically connected to the substrate. The cover is disposed on the substrate, and covers the image sensor chip.
Abstract:
An image sensor module including a substrate, an image signal processor, a supporting board, an image sensor chip and a cover is provided. A concave is located on a surface of the substrate. The image signal processor is disposed in the concave, and is electrically connected to the substrate. The supporting board is disposed on the surface of the substrate and covers the concave. The image sensor chip is disposed on the supporting board and electrically connected to the substrate. The cover is disposed on the substrate, and covers the image sensor chip.
Abstract:
An optical amplifier includes an optical fiber having a core doped with transition metal ions, and at least one glass cladding enclosing the core. By using the fiber, the optical amplifier of the invention has a gain bandwidth of more than 300 nm including 1300-1600 nm band in low-loss optical communication.
Abstract:
An optical amplifier includes an optical fiber having a core doped with transition metal ions, and at least one glass cladding enclosing the core. By using the fiber, the optical amplifier of the invention has a gain bandwidth of more than 300 nm including 1300-1600 nm band in low-loss optical communication.
Abstract:
A substrate structure mainly comprises a plurality of substrate units and a plurality of dispensing holes thereon. A main hole is provided on the surface of the substrate unit, the two ends of which are adjacent to the dispensing hole for dispensing liquified encapsulant material to form a semiconductor package. The semiconductor package mainly comprises a chip, a substrate and an encapsulant. The chip is adhesively attached to the substrate, and the encapsulant covers around the are along one side of the chip. Then the encapsulant flows from the upper surface of the substrate to the lower surface to cover wire areas by means of the liquified encapsulant material flowing through the dispensing hole from the upper surface of the substrate to the lower surface.