Abstract:
A heating, ventilation, and air conditioning (HVAC) system may include a HVAC unit that may control air flow, a first control system that may directly control operation of equipment in the HVAC unit, and a second control system communicatively coupled to the first control system. The second control system may be located in a different zone of a building as compared to the first control system, such that the second control system may receive a request to adjust the air flow output by the HVAC unit and send a command to the first control system based on the request. The command may cause the first control system to adjust the operation of the equipment in the HVAC unit to cause the air flow output by the HVAC unit to be adjusted according to the request.
Abstract:
The present disclosure is directed to a system for a heating, ventilating, and air conditioning (HVAC) system includes a compressor configured to circulate a working fluid through the HVAC system, a fan configured to direct across a heat exchanger coil of the HVAC system, an ambient sensor configured to monitor a condition of an environment surrounding the heat exchanger coil, and a control system communicatively coupled to the ambient sensor, where the control system is configured to detect a status of the ambient sensor, and where the control system is configured to adjust operation of the compressor, or the fan, or both, upon detection of an error of the ambient sensor.
Abstract:
A building controller for a building that includes a first zone and a second zone. The building controller includes a processing circuit configured to store zone modes for the building. The zone modes include zone activity modes each associated with an occupant activity within the zone and one or more environmental settings. The processing circuit is configured to receive an indication to operate the first zone in a first zone mode of the zone modes and an indication to operate the second zone in a second zone mode of the zone modes. The processing circuit is configured to operate one or more pieces of building equipment based on the first zone mode and operate the one or more pieces of building equipment based on the second zone mode.
Abstract:
A heating, ventilation, and air conditioning (HVAC) system includes a controller associated with a residence. The controller is configured to determine an expected value range for an operating parameter of a component of the HVAC system. Additionally, the controller is configured to receive a signal from a sensor indicative of a current value of the operating parameter of the component and determine if the current value of the operating parameter is outside the expected value range. Based on the determination that the current value is outside the expected value range, the controller is additionally configured to initiate a diagnostic mode of the controller. In the diagnostic mode, the controller is configured to collect diagnostic data associated with the HVAC system.
Abstract:
A heating, ventilation, and air conditioning (HVAC) system includes an outdoor unit having a heat exchanger. The heat exchanger includes a coil configured to route refrigerant therethrough. The HVAC system also includes a motor configured to drive a fan, a motor controller configured to regulate operation of the motor, and a global controller configured to regulate operation of global aspects of the HVAC system. The HVAC system also includes a power sensor configured to detect a power parameter relating to a power input to the motor controller, a power output from the motor controller, or a power input to the motor, wherein the global controller is configured to receive data indicative of the power parameter from the power sensor, and wherein the global controller is configured to analyze the data indicative of the power parameter to detect a frozen coil condition, a fouled coil condition, or both.
Abstract:
A thermostat for a building space. The thermostat includes a communications interface and a processing circuit. The communications interface is configured to engage in bidirectional communications with heating, ventilation, or air conditioning (HVAC) equipment and to receive an indication of a current heating or cooling load from the HVAC equipment. The processing circuit is configured to determine an occupancy of the building space based on the indication of the current heating or cooling load received from the HVAC equipment. The processing circuit is further configured to operate the HVAC equipment based on the determined occupancy of the building space.
Abstract:
A thermostat for a building space includes a communications interface, an electronic display, and a processing circuit. The communications interface is configured to receive service provider information via a network connection. The electronic display includes a user interface configured to display the service provider information. The processing circuit is configured to determine when to display the service provider information on the electronic display by monitoring thermostat events.
Abstract:
The present disclosure includes systems and methods for determining dimensions, shapes, and locations of rooms of a building using a mobile device for controlling heating, ventilation, and air conditioning (HVAC) provided to the rooms and building. A measuring device receives a shape of a room in the building and determines a dimension set of the room based on the shape of the room. The measuring device transmits the shape of the room and the dimension set to a mobile device that determines a layout of the building based on the shapes and the dimension sets corresponding to the rooms of the building. In this manner, the systems and methods provide the layout of the building more efficiently, resulting in an improved HVAC system installation and operation process.
Abstract:
Embodiments of the present disclosure are directed to a controller for a heating, ventilation, and/or air conditioning (HVAC) system. The controller is configured to operate in a first defrost mode or a second defrost mode, determine that feedback from a first sensor of the HVAC system is unavailable, receive feedback from a second sensor of the HVAC system, and operate the HVAC system in the second defrost mode instead of the first defrost mode in response to unavailability of the feedback from the first sensor and based on the feedback from the second sensor.
Abstract:
The present disclosure includes a control board including a switchable input/output port. The switchable I/O port may provide a switchable communication bus capable of selectively supporting one of multiple different communication protocols and may provide a switchable power bus capable of selectively conducting electrical power from one of multiple different power supplies. As such, the control board may communicatively and/or electrically couple to a wide range of devices. To that end, the control board may support the dynamic interchange and reconfiguration of devices coupled to the control board, allowing a control system including the control board greater operational flexibility.