Abstract:
A semiconductor device is disclosed along with methods for manufacturing such a device. In certain embodiments, the semiconductor device includes a source electrode formed using a metal that limits a shift, such as due to bias temperature instability, in a threshold voltage of the semiconductor device during operation. In certain embodiments the semiconductor device may be based on silicon carbide.
Abstract:
An defect detection system includes an exoemission sensor having a conductive layer and an insulating layer. The exoemission sensor is mountable to a material of interest and configured to receive exoemissions from the material while in an atmosphere. The exoemission sensor outputs a signal based upon the received emissions. An analysis device is configured to receive the signal from the exoemission sensor and determine whether a defect is present in the material based upon the signal.
Abstract:
A semiconductor device is disclosed along with methods for manufacturing such a device. In certain embodiments, the semiconductor device includes a source electrode formed using a metal that limits a shift, such as due to bias temperature instability, in a threshold voltage of the semiconductor device during operation. In certain embodiments the semiconductor device may be based on silicon carbide.
Abstract:
According to one embodiment, a semiconductor device, having a semiconductor substrate comprising silicon carbide with a gate electrode disposed on a portion of the substrate on a first surface with, a drain electrode disposed on a second surface of the substrate. There is a dielectric layer disposed on the gate electrode and a remedial layer disposed about the dielectric layer, wherein the remedial layer is configured to mitigate negative bias temperature instability maintaining a change in threshold voltage of less than about 1 volt. A source electrode is disposed on the remedial layer, wherein the source electrode is electrically coupled to a contact region of the semiconductor substrate.
Abstract:
An ionizable mercury-free and sodium-free composition is capable of emitting radiation if excited. A radiation source includes such an ionizable mercury-free and sodium-free composition. The ionizable mercury-free and sodium-free composition includes at least a metal, a metal and a metal compound, or a metal compound.
Abstract:
A mercury-free discharge composition is provided. The mercury-free discharge composition may include Titanium, Zirconium, Hafnium, or combinations thereof, and a halogen. The composition may be capable of emitting radiation if excited, and the composition may produce a total equilibrium operating pressure of less than about 100,000 pascals if excited. A mercury-free discharge lamp is also provided. The mercury-free discharge lamp may include an envelope; an ionizable discharge composition including Titanium, Zirconium, Hafnium, or a combination thereof applied within the envelope.
Abstract:
An electron emissive material includes a composition including a metal oxide, where the metal oxide is at least one oxide of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, Hf, or Zr, or any combinations thereof, where the metal oxide is present in a quantity that ranges from about 20% to 100% by weight of the total composition, where the composition is operable to emit electrons in a discharge medium in response to a thermal excitation, wherein the discharge medium under steady state operating conditions producing a total vapor pressure of less than about 2×105 Pa. A lamp including an envelope, an electrode including an electron emissive material and a discharge medium, is also disclosed.
Abstract:
A radiation source is presented, the source comprising an ionizable mercury-free composition that comprises tin halide such that the halide to tin ratio is greater than 2.
Abstract:
A method of analyzing a first gas in a lamp, including: cooling at least a first portion of a lamp below the condensation temperature of the first gas contained in the lamp while operating the lamp; maintaining the temperature of the first portion below the condensation temperature of the first gas until essentially all the available first gas contained in the lamp condenses on the surface of at least the first portion of the lamp; removing a second portion of the lamp, the second portion containing the condensed first gas; and analyzing at least one of the condensed first gas or the remaining bound gas.
Abstract:
The invention relates to an irradiation system for disinfecting water comprising a conduit which is transparent to ultraviolet radiation, a chamber having an annular cross section, disposed around the conduit, the chamber containing an ionizable gas, and a coil disposed around the chamber for ionizing the ionizable gas to produce an ultraviolet emission which propagates into the conduit to disinfect the water flowing through the conduit.