摘要:
According to one embodiment, a semiconductor device, having a semiconductor substrate comprising silicon carbide with a gate electrode disposed on a portion of the substrate on a first surface with, a drain electrode disposed on a second surface of the substrate. There is a dielectric layer disposed on the gate electrode and a remedial layer disposed about the dielectric layer, wherein the remedial layer is configured to mitigate negative bias temperature instability maintaining a change in threshold voltage of less than about 1 volt. A source electrode is disposed on the remedial layer, wherein the source electrode is electrically coupled to a contact region of the semiconductor substrate.
摘要:
According to one embodiment, a semiconductor device, having a semiconductor substrate comprising silicon carbide with a gate electrode disposed on a portion of the substrate on a first surface with, a drain electrode disposed on a second surface of the substrate. There is a dielectric layer disposed on the gate electrode and a remedial layer disposed about the dielectric layer, wherein the remedial layer is configured to mitigate negative bias temperature instability maintaining a change in threshold voltage of less than about 1 volt. A source electrode is disposed on the remedial layer, wherein the source electrode is electrically coupled to a contact region of the semiconductor substrate.
摘要:
A method of forming a vertical MOSFET device includes forming a trench within a drift layer substrate, the drift layer comprising a first polarity type, the trench generally defining a well region of a second polarity type opposite the first polarity type. An ohmic contact layer is formed within a bottom surface of the trench, the ohmic contact layer comprising a material of the second polarity type. A layer of the second polarity type is epitaxially grown over the drift layer, sidewall surfaces of the trench, and the ohmic contact layer. A layer of the first polarity type is epitaxially grown over the epitaxially grown layer of the second polarity type so as to refill the trench, and the epitaxially grown layers of the first and second polarity type are planarized so as to expose an upper surface of the drift layer substrate.
摘要:
A method of forming a vertical MOSFET device includes forming a trench within a drift layer substrate, the drift layer comprising a first polarity type, the trench generally defining a well region of a second polarity type opposite the first polarity type. An ohmic contact layer is formed within a bottom surface of the trench, the ohmic contact layer comprising a material of the second polarity type. A layer of the second polarity type is epitaxially grown over the drift layer, sidewall surfaces of the trench, and the ohmic contact layer. A layer of the first polarity type is epitaxially grown over the epitaxially grown layer of the second polarity type so as to refill the trench, and the epitaxially grown layers of the first and second polarity type are planarized so as to expose an upper surface of the drift layer substrate.
摘要:
A method of forming a vertical MOSFET device includes forming a trench within a drift layer substrate, the drift layer comprising a first polarity type, the trench generally defining a well region of a second polarity type opposite the first polarity type. An ohmic contact layer is formed within a bottom surface of the trench, the ohmic contact layer comprising a material of the second polarity type. A layer of the second polarity type is epitaxially grown over the drift layer, sidewall surfaces of the trench, and the ohmic contact layer. A layer of the first polarity type is epitaxially grown over the epitaxially grown layer of the second polarity type so as to refill the trench, and the epitaxially grown layers of the first and second polarity type are planarized so as to expose an upper surface of the drift layer substrate.
摘要:
The present invention provides a method of fabricating a metal oxide semiconductor field effect transistor. The method includes the steps of forming a source region on a silicon carbide layer and annealing the source region. A gate oxide layer is formed on the source region and the silicon carbide layer. The method further includes providing a gate electrode on the gate oxide layer and disposing a dielectric layer on the gate electrode and the gate oxide layer. The method further includes etching a portion of the dielectric layer and a portion of the gate oxide layer to form sidewalls on the gate electrode. A metal layer is disposed on the gate electrode, the sidewalls and the source region. The method further includes forming a gate contact and a source contact by subjecting the metal layer to a temperature of at least about 800° C. The gate contact and the source contact comprise a metal silicide. The distance between the gate contact and the source contact is less than about 0.6 μm. A vertical SiC MOSFET is also provided.
摘要:
The present invention provides a method of fabricating a metal oxide semiconductor field effect transistor. The method includes the steps of forming a source region on a silicon carbide layer and annealing the source region. A gate oxide layer is formed on the source region and the silicon carbide layer. The method further includes providing a gate electrode on the gate oxide layer and disposing a dielectric layer on the gate electrode and the gate oxide layer. The method further includes etching a portion of the dielectric layer and a portion of the gate oxide layer to form sidewalls on the gate electrode. A metal layer is disposed on the gate electrode, the sidewalls and the source region. The method further includes forming a gate contact and a source contact by subjecting the metal layer to a temperature of at least about 800° C. The gate contact and the source contact comprise a metal silicide. The distance between the gate contact and the source contact is less than about 0.6 μm. A vertical SiC MOSFET is also provided.
摘要:
There is provided a method for dimension profiling of a semiconductor device. The method involves incorporating a feature comprising a detectable element into the device, and thereafter detecting the detectable element to determine a dimension of the feature. This information can be used for the determination of a dimension of buried channels, and also for end-point detection of CMP processes.
摘要:
There is provided a method for dimension profiling of a semiconductor device. The method involves incorporating a feature comprising a detectable element into the device, and thereafter detecting the detectable element to determine a dimension of the feature. This information can be used for the determination of a dimension of buried channels, and also for end-point detection of CMP processes.
摘要:
A method of forming a vertical MOSFET device includes forming a first trench within a semiconductor layer of a first polarity, the first trench generally defining a well region of a second polarity opposite the first polarity; growing a first epitaxial well layer of the second polarity over the original semiconductor layer; growing a second epitaxial source contact layer of the first polarity over the well layer; forming a second trench through the source contact layer and at least a portion of the well layer; growing a third epitaxial layer of the second polarity over the source contact layer; and planarizing at least the first and second epitaxial layers so as to expose an upper surface of the original semiconductor layer, wherein a top surface of the third epitaxial layer is substantially coplanar with a top surface of the source contact layer prior to ohmic contact formation.