摘要:
A double gate germanium metal-oxide semiconductor field-effect transistor (MOSFET) includes a germanium fin, a first gate formed adjacent a first side of the germanium fin, and a second gate formed adjacent a second side of the germanium fin opposite the first side. A triple gate MOSFET includes a germanium fin, a first gate formed adjacent a first side of the germanium fin, a second gate formed adjacent a second side of the germanium fin opposite the first side, and a top gate formed on top of the germanium fin. An all-around gate MOSFET includes a germanium fin, a first sidewall gate structure formed adjacent a first side of the germanium fin, a second sidewall gate structure formed adjacent a second side of the germanium fin, and additional gate structures formed on and around the germanium fin.
摘要:
A double-gate semiconductor device includes a substrate, an insulating layer, a fin and two gates. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. A first gate is formed on the insulating layer and is located on one side of the fin. A portion of the first gate includes conductive material doped with an n-type dopant. The second gate is formed on the insulating layer and is located on the opposite side of the fin as the first gate. A portion of the second gate includes conductive material doped with a p-type dopant.
摘要:
A semiconductor structure includes a fin and a layer formed on the fin. The fin includes a first crystalline material having a rectangular cross section and a number of surfaces. The layer is formed on the surfaces and includes a second crystalline material. The first crystalline material has a different lattice constant than the second crystalline material to induce tensile strain within the first layer.
摘要:
A semiconductor-on-insulator (SOI) wafer. The wafer includes a silicon substrate, a buried oxide (BOX) layer disposed on the substrate, and an active layer disposed on the box layer. The active layer has an upper silicon layer disposed on a silicon-germanium layer. The silicon-germanium layer is disposed on a lower silicon layer. The silicon-germanium of the silicon-germanium layer is strained silicon-germanium and is about 200 Å to about 400 Å thick.
摘要:
A method for forming one or more FinFET devices includes forming a source region and a drain region in an oxide layer, where the oxide layer is disposed on a substrate, and etching the oxide layer between the source region and the drain region to form a group of oxide walls and channels for a first device. The method further includes depositing a connector material over the oxide walls and channels for the first device, forming a gate mask for the first device, removing the connector material from the channels, depositing channel material in the channels for the first device, forming a gate dielectric for first device over the channels, depositing a gate material over the gate dielectric for the first device, and patterning and etching the gate material to form at least one gate electrode for the first device.
摘要:
A silicon-on-insulator (SOI) transistor. The SOI transistor having a source and a drain having a body disposed therebetween, the source being implanted with germanium to form an area of silicon-germanium adjacent a source/body junction in a lower portion of the source, the area of silicon-germanium in the source forming a hetero junction along a lower portion of the source/body junction.
摘要:
A method of forming a semiconductor-on-insulator (SOI) wafer. The method includes the steps of providing a first wafer, the first wafer having a silicon substrate and an oxide layer disposed thereon; providing a second wafer, the second wafer having a silicon substrate, the substrate of the second wafer having a silicon-germanium layer disposed thereon, a silicon layer disposed on the silicon-germanium layer and an oxide layer disposed on the silicon layer; wafer bonding the first and second wafers; and removing an undesired portion of the substrate from the second wafer to form an upper silicon layer. The resulting SOI wafer structure is also disclosed.
摘要:
The inventive method provides improved semiconductor devices, such as MOSFET's with raised source/drain extensions on a substrate with isolation trenches etched into the surface of the substrate. The inventive method provides thin first dielectric spacers on the side of a gate and gate oxide and extend from the top of the gate to the surface of the substrate. Raised source/drain extensions are placed on the surface of a substrate, which extend from the first dielectric spacers to the isolation trenches. Thicker second dielectric spacers are placed adjacent to the first dielectric spacers and extend from the top of the first dielectric spacers to the raised source/drain extensions. Raised source/drain regions are placed on the raised source/drain extensions, and extend from the isolation trenches to the second dielectric spacers. The inventive semiconductor devices provide for very shallow source drain extensions which results in a reduced short channel effect.
摘要:
A device includes a fin, a first gate and a second gate. The first gate is formed adjacent a first side of the fin and includes a first layer of material having a first thickness and having an upper surface that is substantially co-planar with an upper surface of the fin. The second gate is formed adjacent a second side of the fin opposite the first side and includes a second layer of material having a second thickness and having an upper surface that is substantially co-planar with the upper surface of the fin, where the first thickness and the second thickness are substantially equal to a height of the fin.
摘要:
A double-gate semiconductor device includes a substrate, an insulating layer, a fin and a gate. The insulating layer is formed on the substrate and the gate is formed on the insulating layer. The fin has a number of side surfaces, a top surface and a bottom surface. The bottom surface and at least a portion of the side surfaces of the fin are surrounded by the gate. The gate material surrounding the fin has a U-shaped cross-section at a channel region of the semiconductor device.