Abstract:
The present invention provides a constellation mapping method, and the method includes: flipping a plurality of bits in each modulation symbol unit to be mapped in part of or all of modulation symbol units to be mapped of a bit sequence to be mapped; and mapping each flipped modulation symbol unit to be mapped as a modulation symbol in a constellation. By means of the present invention, the phenomenon that consecutive bits have the same reliability can be effectively avoided by changing unevenness of reliability distribution of the consecutive bits, and at the same time, the link performance can be improved.
Abstract:
The present invention discloses a method for Multiple Input Multiple Output (MIMO) channel information feedback, and the method includes: a terminal selecting part of column vectors for MIMO system feedback from a codebook matrix W corresponding to a Precoding Matrix Indicator (PMI) and marking the selected part of column vectors as Wpart; the terminal determining information O which represents high-precision vector quantification information of MIMO along with the part of column vectors Wpart according to a common representation relationship F, and feeding back the information O to a base station. The present invention also discloses a terminal and a base station which support MIMO. The present invention achieves high-precision and low-overhead channel information feedback and can well support multiple vector feedback needed by high rank (more layer multiplexing) MIMO transmission and high-precision feedback needed by low rank MIMO transmission simultaneously.
Abstract:
A method for forming a polycrystalline film, a polycrystalline film formed by the method and a thin film transistor fabricated from the polycrystalline film are provided. The method comprises the steps of: providing a substrate; forming a thermal conductor layer on the substrate; etching the thermal conductor layer until the substrate is exposed to form a thermal conductor pattern; forming a seed layer on the thermal conductor layer and the substrate; etching the seed layer to form seed crystals on both sidewalls of the thermal conductor; forming an amorphous layer on the substrate, the thermal conductor layer and the seed crystals; etching the amorphous layer; and recrystallizing the amorphous layer to form a polycrystalline layer.
Abstract:
A semiconductor structure with beryllium oxide is provided. The semiconductor structure comprises: a semiconductor substrate (100); and a plurality of insulation oxide layers (201, 202 . . . 20x) and a plurality of single crystal semiconductor layers (301, 302 . . . 30x) alternately stacked on the semiconductor substrate (100). A material of the insulation oxide layer (201) contacted with the semiconductor substrate (100) is any one of beryllium oxide, SiO2, SiOxNy and a combination thereof, a material of other insulation oxide layers (202 . . . 20x) is single crystal beryllium oxide.
Abstract translation:提供了具有氧化铍的半导体结构。 半导体结构包括:半导体衬底(100); 以及交替层叠在半导体基板(100)上的多个绝缘氧化物层(201,202,20.0x)和多个单晶半导体层(301,302,30 ...)。 与半导体衬底(100)接触的绝缘氧化物层(201)的材料是氧化铍,SiO 2,SiO x N y及其组合中的任一种,其它绝缘氧化物层(202.20x)的材料是单晶 氧化铍。
Abstract:
A dynamic random access memory unit and a method for fabricating the same are provided. The dynamic random access memory unit comprises: a substrate; an insulating buried layer formed on the substrate; a body region formed on the insulating buried layer and used as a charge storing region; two isolation regions formed on the body region, in which a semiconductor contact region is formed between the isolation regions and is a charge channel; a source, a drain and a channel region formed on the isolation regions and the semiconductor contact region respectively and constituting a transistor operating region which is partially separated from the charge storing region by the isolation regions and connected with the charge storing region via the charge channel; a gate dielectric layer formed on the transistor operating region, a gate formed on the gate dielectric layer; a source metal contact layer, a drain metal contact layer.
Abstract:
A MOS transistor structure with an in-situ doped source and/or drain and a method for forming the same are provided. The method comprises steps of: providing a substrate; forming a high Ge content layer on the substrate; forming a gate stack on the high Ge content layer and forming a side wall of one or more layers on both sides of the gate stack; etching the high Ge content layer to form a source region and/or a drain region; and forming a source and/or a drain in the source region and/or the drain region respectively by a low-temperature selective epitaxy, and introducing a doping gas during the low-temperature selective epitaxy to heavily dope the source and/or the drain and to in-situ activate a doping element.
Abstract:
A mobile wireless communications device may include a housing, a cellular transceiver carried by the housing and to operate at a given transmit power level from among different transmit power levels, and a WLAN transceiver carried by the housing and to operate at a given receive gain level from among different receive gain levels. The mobile wireless communications device may also include a controller to select the given receive gain level based upon the given transmit power level of the cellular transceiver.
Abstract:
Systems and methods are provided for implementing list decoding in a Reed-Solomon (RS) error-correction system. A detector can provide a decision-codeword from a channel and can also provide soft-information for the decision-codeword. The soft-information can be organized into an order of combinations of error events for list decoding. An RS decoder can employ a list decoder that uses a pipelined list decoder architecture. The list decoder can include one or more syndrome modification circuits that can compute syndromes in parallel. A long division circuit can include multiple units that operate to compute multiple quotient polynomial coefficients in parallel. The list decoder can employ iterative decoding and a validity test to generate error indicators. The iterative decoding and validity test can use the lower syndromes.
Abstract:
The codec includes an encoding/decoding operation module and a basic matrix storage module. In the stored basic matrix Hb, for all girths with length of 4, any column element of i, j, k or l constituting the girths in anti-clockwise or clockwise always satisfies inequality: (i−j+k−1) mod z≠0, wherein z is the extension factor. When generating the basic matrix, firstly the number of rows M, number of columns N, and weight vectors of the rows and columns are determined, an irregularly original basic matrix is constructed; then the position of ‘1’ is filled by a value chosen from set {0, 1, 2, . . . , z−1} to obtain the basic matrix Hb. The basic matrix Hb obtained by storing constitutes the desired encoder/decoder. The encoder/decoder according to the present invention can effectively eliminate error-floor phenomenon of LDPC codes and accelerate the falling speed of BER curve.
Abstract:
A semiconductor device and a method for forming the same are provided. The semiconductor device comprises: a substrate (1); an insulating layer (2), formed on the substrate (1) and having a trench (21) to expose an upper surface of the substrate (1); a first buffer layer (3), formed on the substrate (1) and in the trench (21); and a compound semiconductor layer (4), formed on the first buffer layer (3), wherein an aspect ratio of the trench (21) is larger than 1 and smaller than 10, wherein the first buffer layer (3) is formed by a low-temperature reduced pressure chemical vapor deposition process at a temperature between 200° C. and 500° C., and wherein the compound semiconductor layer (4) is formed by a low-temperature metal organic chemical vapor deposition process at a temperature between 200° C. and 600° C.