摘要:
A method for making a semiconductor device is described. That method comprises forming a first dielectric layer on a substrate, then forming a trench within the first dielectric layer. After forming a second dielectric layer on the substrate, a first metal layer is formed within the trench on a first part of the second dielectric layer. A second metal layer is then formed on the first metal layer and on a second part of the second dielectric layer.
摘要:
A nanotube transistor, such as a carbon nanotube transistor, may be formed with a top gate electrode and a spaced source and drain. Conduction along the transistor from source to drain is controlled by the gate electrode. Underlying the gate electrode are at least two nanotubes. In some embodiments, the substrate may act as a back gate.
摘要:
In a metal gate replacement process, a stack of at least two polysilicon layers or other materials may be formed. Sidewall spacers may be formed on the stack. The stack may then be planarized. Next, the upper layer of the stack may be selectively removed. Then, the exposed portions of the sidewall spacers may be selectively removed. Finally, the lower portion of the stack may be removed to form a T-shaped trench which may be filled with the metal replacement.
摘要:
A method utilizing a common gate electrode material with a single work function for both the pMOS and nMOS transistors where the magnitude of the transistor threshold voltages is modified by semiconductor band engineering and article made thereby.
摘要:
A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
摘要:
A method for making a semiconductor device is described. That method comprises forming a high-k gate dielectric layer on a substrate, forming a barrier layer on the high-k gate dielectric layer, and forming a fully silicided gate electrode on the barrier layer.
摘要:
A method for making a semiconductor device is described. That method comprises forming an oxide layer on a substrate, and forming a high-k dielectric layer on the oxide layer. The oxide layer and the high-k dielectric layer are then annealed at a sufficient temperature for a sufficient time to generate a gate dielectric with a graded dielectric constant.
摘要:
A method for fabricating a three-dimensional transistor is described. Atomic Layer Deposition of nickel, in one embodiment, is used to form a uniform silicide on all epitaxially grown source and drain regions, including those facing downwardly.
摘要:
In a metal gate replacement process, a cup-shaped gate metal oxide dielectric may have a vertical portion that may be exposed to a silicon ion implantation. As a result of the implantation, the dielectric constant of a vertical portion may be reduced, reducing fringe capacitance.
摘要:
A semiconductor device is described. That semiconductor device comprises a high-k gate dielectric layer that is formed over a channel that is positioned within a substrate, and a metal gate electrode that is formed on the high-k gate dielectric layer. The high-k gate dielectric layer has off-state leakage characteristics that are superior to those of a silicon dioxide based gate dielectric, and on-state mobility characteristics that are superior to those of a high-k gate dielectric that comprises an isotropic material.