Abstract:
Apparatus and methods for inspecting a specimen are disclosed. An inspection tool is used at one or more operating modes to obtain images of a plurality of training regions of a specimen, and the training regions are identified as defect-free. Three or more basis training images are derived from the images of the training regions. A classifier is formed based on the three or more basis training images. The inspection system is used at the one or more operating modes to obtain images of a plurality of test regions of a specimen. Three or more basis test images are derived from to the test regions. The classifier is applied to the three or more basis test images to find defects in the test regions.
Abstract:
Disclosed are methods and apparatus for qualifying a photolithographic reticle. A reticle inspection tool is used to acquire images at different imaging configurations from each of the pattern areas of a calibration reticle. A reticle near field is recovered for each of the pattern areas of the calibration reticle based on the acquired images from each pattern area of the calibration reticle. Using the recovered reticle near field for the calibration reticle, a lithography model for simulating wafer images is generated based on the reticle near field. Images are then acquired at different imaging configurations from each of the pattern areas of a test reticle. A reticle near field for the test reticle is then recovered based on the acquired images from the test reticle. The generated model is applied to the reticle near field for the test reticle to simulate a plurality of test wafer images, and the simulated test wafer images are analyzed to determine whether the test reticle will likely result in an unstable or defective wafer.
Abstract:
A method and system for performing model-based registration and critical dimension measurement is disclosed. The method includes: utilizing an imaging device to obtain at least one optical image of a measurement site specified for a photomask; retrieving a design of photomask and utilizing a computer model of the imaging device to generate at least one simulated image of the measurement site; adjusting at least one parameter of the computer model to minimize dissimilarities between the simulated images and the optical images, wherein the parameters includes at least a pattern registration parameter or a critical dimension parameter; and reporting the pattern registration parameter or the critical dimension parameter of the computer model when dissimilarities between the simulated images and the optical images are minimized.
Abstract:
Block-to-block reticle inspection includes acquiring a swath image of a portion of a reticle with a reticle inspection sub-system, identifying a first occurrence of a block in the swatch image and at least a second occurrence of the block in the swath image substantially similar to the first occurrence of the block and determining at least one of a location, one or more geometrical characteristics of the block and a spatial offset between the first occurrence of the block and the at least a second occurrence of the block.
Abstract:
In one embodiment, disclosed are apparatus, methods, and targets for determining a phase shift of a photomask having a phase-shift target. An inspection or metrology system is used to direct an incident beam towards the target and then detect a plurality of intensity measurements that are transmitted through the target in response to the incident beam. A phase shift value for the target may then be determined based on the intensity measurements.
Abstract:
Disclosed are methods and apparatus for facilitating an inspection of a sample using an inspection tool. An inspection tool is used to obtain an image or signal from an EUV reticle that specifies an intensity variation across the EUV reticle, and this intensity variation is converted to a CD variation that removes a flare correction CD variation so as to generate a critical dimension uniformity (CDU) map without the flare correction CD variation. This removed flare correction CD variation originates from design data for fabricating the EUV reticle, and such flare correction CD variation is generally designed to compensate for flare differences that are present across a field of view (FOV) of a photolithography tool during a photolithography process. The CDU map is stored in one or more memory devices and/or displayed on a display device, for example, of the inspection tool or a photolithography system.
Abstract:
A reticle is inspected with an imaging system to obtain a measured image of a structure on the reticle, and the structure has an unknown critical dimension (CD). Using a model, a calculated image is generated using a design database that describes a pattern used to form the structure on the reticle. The model generates the calculated image based on: optical properties of reticle materials of the structure, a computational model of the imaging system, and an adjustable CD. A norm of a difference between the measured and calculated images is minimized by adjusting the adjustable CD and iteratively repeating the operation of generating a calculated image so as to obtain a final CD for the unknown CD of the structure. Minimizing the norm of the difference is performed simultaneously with respect to the adjustable CD and one or more uncertain parameters of the imaging system.
Abstract:
Methods and systems for performing measurements of semiconductor structures and materials based on scatterometry measurement data are presented. Scatterometry measurement data is used to generate an image of a material property of a measured structure based on the measured intensities of the detected diffraction orders. In some examples, a value of a parameter of interest is determined directly from the map of the material property of the measurement target. In some other examples, the image is compared to structural characteristics estimated by a geometric, model-based parametric inversion of the same measurement data. Discrepancies are used to update the geometric model of the measured structure and improve measurement performance. This enables a metrology system to converge on an accurate parametric measurement model when there are significant deviations between the actual shape of a manufactured structure subject to model-based measurement and the modeled shape of the structure.
Abstract:
Systems and methods for detecting defects on a reticle are provided. The embodiments include generating and/or using a data structure that includes pairs of predetermined segments of a reticle pattern and corresponding near-field data. The near-field data for the predetermined segments may be determined by regression based on actual image(s) of a reticle generated by a detector of a reticle inspection system. Inspecting a reticle may then include separately comparing two or more segments of a pattern included in an inspection area on the reticle to the predetermined segments and assigning near-field data to at least one of the segments based on the predetermined segment to which it is most similar. The assigned near-field data can then be used to simulate an image that would be formed for the reticle by the detector, which can be compared to an actual image generated by the detector for defect detection.
Abstract:
Disclosed are methods and apparatus for inspecting a photolithographic reticle. A plurality of reference far field images are simulated by inputting a plurality of reference near field images into a physics-based model, and the plurality of reference near field images are generated by a trained deep learning model from a test portion of the design database that was used to fabricate a test area of a test reticle. The test area of a test reticle, which was fabricated from the design database, is inspected for defects via a die-to-database process that includes comparing the plurality of reference far field reticle images simulated by the physic-based model to a plurality of test images acquired by the inspection system from the test area of the test reticle.