摘要:
Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
摘要:
Novel addressing schemes for controlling electronically addressable displays include a scheme for rear-addressing displays, which allows for in-plane switching of the display material. Other schemes include a rear-addressing scheme which uses a retroreflecting surface to enable greater viewing angle and contrast. Another scheme includes an electrode structure that facilitates manufacture and control of a color display. Another electrode structure facilitates addressing a display using an electrostatic stylus. Methods of using the disclosed electrode structures are also disclosed. Another scheme includes devices combining display materials with silicon transistor addressing structures.
摘要:
A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides a method for synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers may be used as templates for the growth of inorganic colloids. A preferred embodiment is a SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. Once the second monolayer has formed, it is polymerized in place and the two monolayers are separated to form a replicate. Both monolayers may then function as templates for monolayer assemblies. A generic self-replicating monomer unit suitable for use in one embodiment comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry. The recognition element is self-complementary, unless a set of two replicating monomers with compatible cross-linking chemistry is employed. In a two-component replication system utilizing two different kinds of recognition chemistries, the initial template undergoes replication cycles, while maintaining the two-dimensional segregation of the two types of monomers. During subsequent replications, the component domains experience little or no mixing, allowing the two-component, patterned assembly to be exponentially replicated. After replication, selective mineralization and/or electroless plating may produce a two-dimensional inorganic sheet having patterned domains within it.
摘要:
We describe a system of electronically active inks which may include electronically addressable contrast media, conductors, insulators, resistors, semiconductive materials, magnetic materials, spin materials, piezoelectric materials, optoelectronic, thermoelectric or radio frequency materials. We further describe a printing system capable of laying down said materials in a definite pattern. Such a system may be used for instance to: print a flat panel display complete with onboard drive logic; print a working logic circuit onto any of a large class of substrates; print an electrostatic or piezoelectric motor with onboard logic and feedback or print a working radio transmitter or receiver.
摘要:
A method for sensing the state of an electrophoretic display includes the steps of applying an electrical signal to a display element, measuring an electrical response for the display element, and deducing the state of the display element from the measured electrical response. Also, the parameters of the display materials are determined using the encapsulated electrophoretic display media as a sensor, either alone or in conjunction with other sensors.
摘要:
Methods and compositions for rendering nucleic acids directly responsive to an external signal utilizing modulators that themselves respond to the external signal and are associated with the nucleic acid. In response to the external signal, the modulator alters physical properties of the specific nucleic acid molecule(s) with which it is associated, thereby altering the structural and functional properties thereof. The modulator may, for example, transfer applied energy to a nucleic acid, or to a portion of the nucleic acid, thereby changing the nucleic acid structure.
摘要:
Methods and compositions for rendering proteins directly responsive to an external signal utilizing modulators that themselves respond to the external signal and are associated with the proteins. In response to the external signal, the modulator alters physical properties of the specific protein molecule(s) with which it is associated, thereby altering the structural and functional properties thereof. The modulator may, for example, transfer applied energy to a protein, or to a portion of the protein, thereby changing the protein structure and function.
摘要:
A method for sensing the state of an electrophoretic display includes the steps of applying an electrical signal to a display element, measuring an electrical response for the display element, and deducing the state of the display element from the measured electrical response.
摘要:
Nanoparticles are utilized to create, through deposition and patterning, functional electronic, electromechanical, and mechanical systems. At sizes ranging from 1 to 999 nm, the ratio of surface atoms to interior atoms becomes non-negligible, and particle properties therefore lie between those of the bulk and atomic materials. Monodisperse (i.e., uniformly sized) or polydisperse nanoparticles can form stable colloids or suspensions in appropriate dispersing media, facilitating their deposition and processing in a liquid state. As a result, printing technology can be utilized to deposit and pattern nanoparticles for mass production or for personal desktop manufacturing.
摘要:
Disclosed herein are novel electrophoretic displays and materials useful in fabricating such displays. In particular, novel encapsulated displays are disclosed. Particles encapsulated therein are dispersed within a suspending, or electrophoretic, fluid. This fluid may be a mixture of two or more fluids or may be a single fluid. The displays may further comprise particles dispersed in a suspending fluid, wherein the particles contain a liquid. In either case, the suspending fluid may have a density or refractive index substantially matched to that of the particles dispersed therein. Finally, also disclosed herein are electro-osmotic displays. These displays comprise at least one capsule containing either a cellulosic or gel-like internal phase and a liquid phase, or containing two or more immiscible fluids. Application of electric fields to any of the electrophoretic displays described herein affects an optical property of the display.