Abstract:
A radar module includes a printed circuit board (PCB) and a semiconductor package mounted on the PCB. The semiconductor package comprises an integrated circuit die and a substrate for electrically connecting the integrated circuit die to the PCB. The substrate comprises an antenna layer integrated into the semiconductor package and electrically connected to the integrated circuit die for at least one of transmitting and receiving radar signals. A discrete pattern-shaping device is mounted on the PCB and is configured to shape a radiation pattern of the radar signals.
Abstract:
A radar module includes a printed circuit board (PCB) and a semiconductor package mounted on the PCB. The semiconductor package comprises an integrated circuit die and a substrate for electrically connecting the integrated circuit die to the PCB. The substrate comprises an antenna layer integrated into the semiconductor package and electrically connected to the integrated circuit die for at least one of transmitting and receiving radar signals. A discrete pattern-shaping device is mounted on the PCB and is configured to shape a radiation pattern of the radar signals.
Abstract:
A semiconductor package includes a first substrate, a first layer structure, a second layer structure and a first antenna layer. The first antenna layer is formed on at least one of the first layer structure and the second layer structure. The first layer structure is formed between the first substrate and the second layer structure.
Abstract:
A wireless test system includes a load board having an upper surface and a lower surface. The load board has a testing antenna disposed on the load board. A socket for receiving a device under test (DUT) having an antenna structure therein is disposed on the upper surface of the load board. The antenna structure is aligned with the testing antenna. The wireless test system further includes a handler for picking up and delivering the DUT to the socket. The handler has a clamp for holding and pressing the DUT. The clamp is grounded during testing and functions as a ground reflector that reflects and reverses radiation pattern of the DUT from an upward direction to a downward direction toward the testing antenna.
Abstract:
A harmonic translational filter includes a first path, a second path and a signal combiner. The first path has a first translational filter that is driven by a plurality of first oscillation signals, and is arranged to generate a first output signal according to an input signal. The second path has a second translation filter that is driven by a plurality of second oscillation signals that are different from the first oscillation signals in phase. The second path is coupled to the first path and arranged to generate a second output signal according to the input signal. The signal combiner is coupled to the first path and the second path, and arranged to combine the first output signal and the second output signal to generate a filtered signal.
Abstract:
A transmitter circuit includes a frequency generation circuit configured to generate a local oscillator signal and a digital modulator configured to: receive data to be transmitted; quadrature modulate the received data to at least a first, Q, modulated value and a second, I, modulated value; examine the quadrature modulated data to determine if the first, Q, modulated value exceeds a limit, and in response thereto selectively modify the quadrature modulated values to a first modified, Q′, modulated value and a second modified, I′, modulated value thereby bringing only a value of the first modified, Q′, modulated value to within the limit. A local oscillator phase is selected in order to map the first modified, Q′, modulated value and second modified, I′, modulated value to desired quadrature values. A digital power amplifier, DPA, coupled to the digital quadrature modulator, is configured to amplify the quadrature modified modulated data.
Abstract:
A semiconductor chip includes a first wireless communication circuit, a local oscillator (LO) buffer, and an auxiliary path. The first wireless communication circuit has a signal path, wherein the signal path has a mixer input port and a signal node distinct from the mixer input port. The auxiliary path is used to electrically connect the LO buffer to the signal node of the signal path. The LO buffer is reused for a loop-back test function through the auxiliary path.
Abstract:
A semiconductor package includes a first substrate, a first layer structure, a second layer structure, a first antenna layer and an electronic component. The first antenna layer is formed on at least one of the first layer structure and the second layer structure, wherein the first antenna layer has an upper surface flush with a layer upper surface of the first layer structure or the second layer structure. The electronic component is disposed on a substrate lower surface of the first substrate and exposed from the first substrate. The first layer structure is formed between the first substrate and the second layer structure.
Abstract:
A semiconductor chip includes a first wireless communication circuit, a local oscillator (LO) buffer, and an auxiliary path. The first wireless communication circuit has a signal path, wherein the signal path has a mixer input port and a signal node distinct from the mixer input port. The auxiliary path is used to electrically connect the LO buffer to the signal node of the signal path. The LO buffer is reused for a loop-back test function through the auxiliary path.
Abstract:
Various examples pertaining to a sensor system interconnect for automatic configuration of sensors of the sensor system are described. A sensor senses at least one parameter. The sensor also determines its respective position among a series of sensors. Based on a result of the determining, the sensor performing either a first procedure, responsive to the sensor being a first sensor in the series of sensors, or a second procedure, responsive to the sensor not being the first sensor in the series of sensors. The first procedure involves the sensor transmitting first data of the sensed at least one parameter via a second input/output (I/O) pin of the sensor. The second procedure involves the sensor receiving second data from a preceding sensor in the series of sensors via a first I/O pin of the sensor and transmitting the first data and the second data via the second I/O pin.