Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
Abstract:
A display system can include a head-mounted display configured to project light to an eye of a user to display augmented reality image content to the user. The display system can include one or more user sensors configured to sense the user and can include one or more environmental sensors configured to sense surroundings of the user. The display system can also include processing electronics in communication with the display, the one or more user sensors, and the one or more environmental sensors. The processing electronics can be configured to sense a situation involving user focus, determine user intent for the situation, and alter user perception of a real or virtual object within the vision field of the user based at least in part on the user intent and/or sensed situation involving user focus. The processing electronics can be configured to at least one of enhance or de-emphasize the user perception of the real or virtual object within the vision field of the user.
Abstract:
A wearable device can present virtual content to the wearer for many applications in a healthcare setting. The wearer may be a patient or a healthcare provider (HCP). Such applications can include, but are not limited to, access, display, and modification of patient medical records and sharing patient medical records among authorized HCPs.
Abstract:
A wearable ophthalmic device is disclosed. The device may include a head-mounted light field display configured to generate a physical light field comprising a beam of light. The head-mounted light field display may direct the beam of light into a user's eye, thereby producing a retinal reflex. The device may also include a head-mounted photodetector array configured to receive the retinal reflex and to generate numerical image data. The device may also include a light field processor configured to control the light field display, to analyze the retinal reflex using the numerical image data, and to determine an optical prescription for the user's eye based on the analysis of the retinal reflex.
Abstract:
A wearable device can present virtual content to the wearer for many applications in a healthcare setting. The wearer may be a patient or a healthcare provider (HCP). Such applications can include, but are not limited to, access, display, and modification of patient medical records and sharing patient medical records among authorized HCPs.
Abstract:
In some embodiments, a display system comprising a head-mountable, augmented reality display is configured to perform a neurological analysis and to provide a perception aid based on an environmental trigger associated with the neurological condition. Performing the neurological analysis may include determining a reaction to a stimulus by receiving data from the one or more inwardly-directed sensors; and identifying a neurological condition associated with the reaction. In some embodiments, the perception aid may include a reminder, an alert, or virtual content that changes a property, e.g. a color, of a real object. The augmented reality display may be configured to display virtual content by outputting light with variable wavefront divergence, and to provide an accommodation-vergence mismatch of less than 0.5 diopters, including less than 0.25 diopters.