摘要:
A feeding mechanism, having a base station to which an elongate base material is continuously fed to be physically or chemically processed at a prescribed speed and from which the processed base material is continuously recovered, wherein tensile force T1 in a direction opposite to a feeding direction is applied at a supply side of the base station, frictional force F is applied at the base station and tensile force T2 in the feeding direction is applied at the recovery side of the base station, on said base material, with these forces satisfying the relation of F>T1>T2, is provided. A feeding mechanism for feeding a base material for performing physical or chemical processing with high accuracy while an elongate base material is continuously fed, particularly a feeding mechanism that suppresses thickness variation along the lengthwise direction or surface damage at a portion where a function is added of the processed base material, can be obtained.
摘要翻译:一种馈送机构,具有基站,连续地将细长的基材连续地供给到其中,以规定的速度进行物理或化学处理,并且经过处理的基材连续回收,其中拉伸力T 1 < 在基站的供给侧施加与进给方向相反的方向,在基站施加摩擦力F,在回收侧施加沿供给方向的拉伸力T 2 2 在所述基材上,提供满足F> T 1 SUB> T 2> 2的关系的这些力。 一种供给机构,用于在连续供给细长的基材的同时高精度地进给用于进行物理或化学处理的基材,特别是抑制沿着长度方向的厚度变化或添加功能的部分的表面损伤的进给机构 可以得到经加工的基材。
摘要:
A connecting element includes a support member, a flexible substrate wrapped around the support member, and elastic contacts provided on the flexible substrate. A positioning hole is formed in the support member. A first positioning component is positioned and soldered on a metal layer formed on a motherboard, and a second positioning component is positioned and soldered on a metal layer formed on an electronic component. The first positioning component is inserted into the positioning hole in the connecting element, and the second positioning member is fitted to the first positioning component. Accordingly, the connecting element is positioned with respect to both the motherboard and the electronic component.
摘要:
Affords high-stability, high-safety lithium secondary batteries of high energy density and superlative charge/discharge cyclability, in which shorting due to the growth of dendrites from the metallic-lithium negative electrode is kept under control. A lithium secondary battery negative-electrode component material, formed by laminating onto a substrate a metallic lithium film and an inorganic solid-electrolyte film, the lithium secondary battery negative-electrode component material characterized in that the inorganic solid-electrolyte film incorporates lithium, phosphorous, sulfur, and oxygen, and is represented by the compositional formula noted below. aLi·bP·cS·dO (Li: lithium; P: phosphorous; S: sulfur; O: oxygen), wherein the ranges of the atomic fractions in the composition are: 0.20≦a≦0.45; 0.10≦b≦0.20; 0.35≦c≦0.60; 0.03≦d≦0.13; (a+b+c+d=1).
摘要:
A hydrogen permeable structure includes a base material (1) including porous ceramic, and a hydrogen permeable film (2) formed on the base material (1), including palladium (Pd) and at least one element other than palladium and having an amount of hydrogen dissolution at a prescribed temperature smaller than that of palladium alone. The hydrogen permeable film (2) is formed on the surface of the porous ceramic base by a physical vapor deposition technique after any pin holes in the surface of the base have been filled with a porous oxide material.
摘要:
A stabilized carbon cluster conducting material comprising (i) a core comprising a conducting or superconducting carbon cluster and (ii) a sheath covering the core; a device comprising a substrate having thereon a film of a conducting or superconducting carbon cluster covered with a protective film capable of substantially preventing permeation of oxygen and water in the atmosphere; and processes for producing the stabilized carbon cluster conducting material and the device.
摘要:
A carbon cluster film has a precisely controlled stable electrical conductivity which does not deteriorate in a short period of time in air. Such a carbon cluster film having a stable electrical conductivity is formed by introducing an impurity into a thin film of fullerenes by ion implantation. The fullerenes include C.sub.60, C.sub.70 or the like.
摘要:
A connecting element includes a support member, a flexible substrate wrapped around the support member, and elastic contacts provided on the flexible substrate. A positioning hole is formed in the support member. A first positioning component is positioned and soldered on a metal layer formed on a motherboard, and a second positioning component is positioned and soldered on a metal layer formed on an electronic component. The first positioning component is inserted into the positioning hole in the connecting element, and the second positioning member is fitted to the first positioning component. Accordingly, the connecting element is positioned with respect to both the motherboard and the electronic component.
摘要:
The invention provides a hydrogen permeable structure, which can effectively prevent peeling-off of a hydrogen permeable film and hence has higher durability, and a method of manufacturing the structure. The hydrogen permeable structure has a hydrogen permeable film formed on the surface of or inside a porous support, having a thickness of not more than 2 &mgr;m, and containing palladium (Pd). The hydrogen permeable film is formed on the surface of or inside the porous support by supplying a Pd-containing solution and a reducing feed material from opposite sides of the porous support.
摘要:
A triphenylamine derivative represented by the following general formula (1): wherein R1, R2, R3, R4, R5 and R6 may be the same or different and each represents a hydrogen atom, alkyl group, halogenated alkyl group, aryl group, dialkylamino group or cyano group; and &phgr;1 and &phgr;2 may be the same or different and each represents an aromatic condensed ring which may have a substituent. Also disclosed is an electroluminescence device comprising the triphenylamine derivative.
摘要:
A substance separation structure comprises a base material including a porous material having a continuous hole with an opening of the hole formed on at least one surface, a porous layer, formed to fill up the opening, having a hole smaller than the hole of the base material and a permeable membrane of not more than 1 &mgr;m in thickness formed on at least one surface of the base material formed with the porous layer to selectively permeate ions or neutral elements or molecules, and the surface roughness of at least one surface of the base material formed with the porous layer is not more than 0.3 &mgr;m in Rmax. The surface of the base material is polished with abrasive grains containing a porous material so that the opening of the base material can be filled up with the porous layer, and the permeable membrane is formed by ion plating.