Abstract:
The problem of accessing an injection port transcutaneously is resolved using wireless position transducers in an inflation port assembly and in an injection syringe. The measurements provided by the transducers indicate to the practitioner the position and orientation of syringe relative to the injection port. A console provides a visual indication of the relative position and orientation so as to guide the practitioner to insert the syringe at the proper site and in the proper direction and to penetrate the port cleanly and correctly.
Abstract:
A pacemaker with position sensing capability permits built-in monitoring of hemodynamic changes. A miniature position sensor, such as a magnetic coil, is fixed to each implanted pacing lead. The pacemaker housing contains a generator unit, including a magnetic field transmitter. The magnetic field transmitted by the generator unit causes the position sensors to generate position signals, which are returned via the pacing leads to a control unit of the pacemaker. Based on these signals, the control unit senses relative positions of the location sensors, and hence the motion of the leads in the heart. Other location sensing techniques are also disclosed.
Abstract:
Apparatus for locating a tissue within a body of a subject includes an acoustic tag configured to be fixed to the tissue and adapted, responsive to acoustic waves incident thereon, to return acoustic echoes. Acoustic transducers are placed at respective positions so as to direct the acoustic waves into the body toward the tissue and to receive the acoustic echoes returned from the tag responsive to the acoustic waves, generating first signals responsive to the received echoes. Transducer position sensors are coupled respectively to the acoustic transducers so as to generate second signals indicative of the respective positions of the acoustic transducers in an external frame of reference. A processing unit processes the first signals and the second signals so as to determine coordinates of the acoustic tag in the external frame of reference.
Abstract:
The problem of accessing an injection port transcutaneously is resolved using wireless position transducers in an inflation port assembly and in an injection syringe. The measurements provided by the transducers indicate to the practitioner the position and orientation of syringe relative to the injection port. A console provides a visual indication of the relative position and orientation so as to guide the practitioner to insert the syringe at the proper site and in the proper direction and to penetrate the port cleanly and correctly.
Abstract:
A method for performing a procedure at the fossa ovalis in the septal wall of the heart includes the steps of providing a sheath having a body wherein the body has a lumen extending therethrough and an open end at a distal end of the body. The body also has at least one electrode at the distal end of the body. The fossa ovalis in the septal wall is identified by using the at least one electrode of the sheath.
Abstract:
Systems and methods are provided for registering maps with images, involving segmentation of three-dimensional images and registration of images with an electro-anatomical map using physiological or functional information in the maps and the images, rather than using only location information. A typical application of the invention involves registration of an electro-anatomical map of the heart with a preacquired or real-time three-dimensional image. Features such as scar tissue in the heart, which typically exhibits lower voltage than healthy tissue in the electro-anatomical map, can be localized and accurately delineated on the three-dimensional image and map.
Abstract:
During a minimally invasive deployment of a mitral valvuloplasty device into the coronary sinus near realtime tracking of the device is monitored to determine whether the device is compressing the left circumflex coronary artery or is likely to do so. In one embodiment of the invention, one or more position sensors are included in the catheter that is used to deploy the constricting implant and or in the implant itself. The position of the device is determined during deployment, and compared to the location of the left circumflex coronary artery, which may be determined by mapping relative to a pre-acquired image or by simultaneous intracardiac ultrasound imaging.
Abstract:
A method for implanting a medical device between tissue comprises the steps of providing a catheter having a body and a distal end thereof wherein the catheter includes an implantable device comprising a housing having a proximal end and a distal end and a longitudinal axis. The implantable device further includes a first set of anchoring members operatively connected to the proximal end of the housing and a second set of anchoring members operatively connected to the distal end of the housing. Both sets of anchoring members are movable between a collapsed position and a deployed position. Each set of anchoring members includes ring members connected to a housing of the device. Further steps of the method include inserting the distal end of the catheter into tissue and disposing the medical device at least partially from the distal end of the catheter. The first set of anchoring members are moved from the collapsed position to the deployed position and one side of the tissue is engaged with the tissue engaging surfaces of each ring member of the first set of anchoring member. The medical device is further disposed completely from the distal end of the catheter wherein the second set of anchoring members are moved from the collapsed position to the deployed position and the other side of the tissue is engaged with the tissue engaging surfaces of each ring member of the second set of anchoring members.
Abstract:
An implantable medical device comprises a housing having a proximal end and a distal end and a longitudinal axis. A first set of anchoring members are operatively connected to the proximal end of the housing. A second set of anchoring members are operatively connected to the distal end of the housing. The first set of anchoring members and the second set of anchoring members are movable between a collapsed position and a deployed position. The collapsed position is defined as a position whereby the first set of anchoring members and the second set of anchoring members are substantially parallel to the longitudinal axis of the housing. The deployed position is defined as a position whereby the first set of anchoring members and the second set of anchoring members are substantially perpendicular to the longitudinal axis of the housing. Each anchoring member of the first set of anchoring members and the second set of anchoring members comprise a ring member wherein each ring member has a tissue engaging surface thereon.
Abstract:
A method for implanting a medical device between tissue comprises the steps of providing a catheter having a body and a distal end thereof wherein the catheter includes an implantable device comprising a housing having a proximal end and a distal end and a longitudinal axis. The implantable device further includes a first set of anchoring members operatively connected to the proximal end of the housing and a second set of anchoring members operatively connected to the distal end of the housing. Both sets of anchoring members are movable between a collapsed position and a deployed position. Each set of anchoring members includes ring members connected to a housing of the device. Further steps of the method include inserting the distal end of the catheter into tissue and disposing the medical device at least partially from the distal end of the catheter. The first set of anchoring members are moved from the collapsed position to the deployed position and one side of the tissue is engaged with the tissue engaging surfaces of each ring member of the first set of anchoring member. The medical device is further disposed completely from the distal end of the catheter wherein the second set of anchoring members are moved from the collapsed position to the deployed position and the other side of the tissue is engaged with the tissue engaging surfaces of each ring member of the second set of anchoring members.