Abstract:
Medical devices and related augmented reality systems and methods are provided. A method of operating an infusion device involves analyzing one or more images captured by an imaging device to identify image content indicative of an activity capable of influencing the physiological condition of the patient and in response to identifying the activity based at least in part on the one or more images, automatically adjusting delivery of the fluid to the patient based at least in part on the activity. An expected nutritional characteristic for a meal is determined based at least in part on the image content, and a delivery adjustment for delivering the fluid is determined based on the expected nutritional characteristic. A graphical indication of the delivery adjustment may also be provided using augmented reality.
Abstract:
Disclosed is a medical device component for delivering medication fluid to a patient. The medical device component includes a fluid infusion device to regulate delivery of medication fluid, a body-mountable base unit, and a top cover assembly that is removably couplable to the base unit and to the fluid infusion device. The base unit includes a cannula to deliver medication fluid under the control of the fluid infusion device, and a physiological analyte sensor to measure a physiological characteristic. The base unit also includes an electronics assembly electrically connected to sensor leads to obtain measurements in the analog domain, to convert measurements into digital sensor data, and to communicate conditioned digital sensor data to the fluid infusion device. The top cover assembly is configured to provide both fluid and electrical connections for the base unit, by way of an infusion tube having sensor conductors integrated therein or otherwise associated therewith.
Abstract:
A method is provided for initializing an analyte sensor, such as a glucose sensor. Where a sensor has been disconnected and reconnected, a disconnection time is determined and a sensor initialization protocol is selected based upon the disconnection time. The sensor initialization protocol may include applying a first series of voltage pulses to the sensor. A method for detecting hydration of a sensor is also provided.
Abstract:
Disclosed are methods, apparatuses, etc. for glucose sensor signal stability analysis. In certain example embodiments, a series of samples of at least one sensor signal that is responsive to a blood glucose level of a patient may be obtained. Based at least partly on the series of samples, at least one metric may be determined to assess an underlying trend of a change in responsiveness of the at least one sensor signal to the blood glucose level of the patient over time. A reliability of the at least one sensor signal to respond to the blood glucose level of the patient may be assessed based at least partly on the at least one metric assessing an underlying trend. Other example embodiments are disclosed herein.
Abstract:
A device includes a glucose monitor comprising at least one sensor electrode configured to sense signals indicative of interstitial glucose level of a patient. The device also includes a memory and one or more processors implemented in circuitry and in communication with the memory. The one or more processors are configured to cause delivery of a cleaning electrical current to the at least one sensor electrode. The cleaning electrical current is one or more electrochemical cleaning pulses configured to at least partially remove, in vivo and from the sensor electrode, excipients associated with the delivery of a fluid that includes insulin.
Abstract:
A fluid infusion system includes a housing configured to be adhesively coupled to an anatomy of a user, and a tube configured to extend from the housing for insertion into the anatomy of the user. The tube includes a plurality of conduits defined within the tube. The plurality of conduits include a fluid delivery conduit configured to facilitate a fluidic connection between a fluid source and the anatomy of the user, and one or more conduits configured to accommodate a plurality of electrodes for determining a physiological characteristic of the user.
Abstract:
An insertion set system includes a base configured to be secured to a patient, and a flexible tubing on the base. The flexible tubing has a distal end portion forming a cannula to be inserted into the patient. An inserter having a needle is received by the base. The needle has a channel in which the distal end portion of the flexible tubing is received. The needle is able to slide relative to the flexible tubing, to selectively withdraw the needle off of the distal end portion of the flexible tubing. The base may include a passage for fluid flow arranged transverse to the axial dimension of the distal end portion of the flexible tubing.
Abstract:
Disclosed is a medical device component for delivering medication fluid to a patient. The medical device component includes a fluid infusion device to regulate delivery of medication fluid, a body-mountable base unit, and a top cover assembly that is removably couplable to the base unit and to the fluid infusion device. The base unit includes a cannula to deliver medication fluid under the control of the fluid infusion device, and a physiological analyte sensor to measure a physiological characteristic. The base unit also includes an electronics assembly electrically connected to sensor leads to obtain measurements in the analog domain, to convert measurements into digital sensor data, and to communicate conditioned digital sensor data to the fluid infusion device. The top cover assembly is configured to provide both fluid and electrical connections for the base unit, by way of an infusion tube having sensor conductors integrated therein or otherwise associated therewith.
Abstract:
Medical devices and related augmented reality systems and methods are provided. A method of providing guidance to a patient using an electronic device having an imaging device associated therewith involves analyzing one or more images captured by the imaging device to identify image content indicative of a potential activity for the patient, determining, by a control system associated with the electronic device, one or more attributes for the potential activity, determining, by the control system, a predicted physiological response by the patient to the potential activity based at least in part on the one or more attributes, and providing, on a display associated with the electronic device, an augmented reality graphical user interface including a graphical indication influenced by the predicted physiological response.
Abstract:
An insertion set system includes a base configured to be secured to a patient, and a flexible tubing on the base. The flexible tubing has a distal end portion forming a cannula to be inserted into the patient. An inserter having a needle is received by the base. The needle has a channel in which the distal end portion of the flexible tubing is received. The needle is able to slide relative to the flexible tubing, to selectively withdraw the needle off of the distal end portion of the flexible tubing. The base may include a passage for fluid flow arranged transverse to the axial dimension of the distal end portion of the flexible tubing.