Abstract:
An integrated circuit device is disclosed. In one particular exemplary embodiment, the integrated circuit device may comprise a first circuit to receive, in a multiplexed format, control information and address information, wherein the control information specifies a write operation and the address information specifies a location within a memory array for the write operation. The integrated circuit device may also comprise a second circuit that includes a plurality of output drivers to output write data to be written to the memory array during the write operation, wherein the write data is output after a number of clock cycles of an external clock signal transpire, wherein the write data is output in response to the control information, and wherein each output driver of the plurality of output drivers outputs two bits of the write data during a single clock cycle of the external clock signal.
Abstract:
The present invention includes a memory subsystem comprising at least two semiconductor devices, including at least one memory device, connected to a bus, where the bus includes a plurality of bus lines for carrying substantially all address, data and control information needed by said memory devices, where the control information includes device-select information and the bus has substantially fewer bus lines than the number of bits in a single address, and the bus carries device-select information without the need for separate device-select lines connected directly to individual devices. The present invention also includes a protocol for master and slave devices to communicate on the bus and for registers in each device to differentiate each device and allow bus requests to be directed to a single or to all devices. The present invention includes modifications to prior-art devices to allow them to implement the new features of this invention. In a preferred implementation, 8 bus data lines and an AddressValid bus line carry address, data and control information for memory addresses up to 40 bits wide.
Abstract:
The present invention includes a memory subsystem comprising at least two semiconductor devices, including at least one memory device, connected to a bus, where the bus includes a plurality of bus lines for carrying substantially all address, data and control information needed by said memory devices, where the control information includes device-select information and the bus has substantially fewer bus lines than the number of bits in a single address, and the bus carries device-select information without the need for separate device-select lines connected directly to individual devices. The present invention also includes a protocol for master and slave devices to communicate on the bus and for registers in each device to differentiate each device and allow bus requests to be directed to a single or to all devices. The present invention includes modifications to prior-art devices to allow them to implement the new features of this invention. In a preferred implementation, 8 bus data lines and an AddressValid bus line carry address, data and control information for memory addresses up to 40 bits wide.
Abstract:
A method of operation of a synchronous memory device. The memory device includes an array of dynamic random access memory cells. The method of operation of the memory device includes receiving an external clock signal, and sampling a first operation code synchronously with respect to the external clock signal, the first operation code specifying a write operation. Additionally, the method of operation of the memory device includes sampling data after a number of clock cycles of the external clock signal transpire. The data is sampled in response to the first operation code.
Abstract:
A method of controlling a memory device, wherein the memory device includes a plurality of memory cells. The method includes providing first block size information to the memory device, wherein the first block size information defines a first amount of data to be input by the memory device in response to a write request. The method further includes issuing a write request to the memory device, wherein in response to the write request the memory device inputs the first amount of data corresponding to the first block size information.
Abstract:
A synchronous memory device having at least one memory section which includes a plurality of memory cells. The memory device includes clock receiver circuitry, clock generation circuitry and input receiver circuitry. The clock receiver circuitry receives an external clock signal from an external bus. The clock generation circuitry is coupled to the clock receiver circuitry, and includes a delay locked loop to generate a first internal clock signal. The input receiver circuitry is coupled to the clock generation circuitry and the external bus to sample information from the external bus in response to the first internal clock signal.
Abstract:
A memory system having a plurality of memory devices, each having at least one memory array which includes a plurality of memory cells. The memory system comprises a bus, a controller, a first memory device, and a second memory device. The bus includes a plurality of sisal lines coupled to the plurality of memory devices. The bus provides a transaction request including identification information generated by the controller, to the plurality of memory devices. The first and second memory device each include a programmable register, interface circuitry, and comparison circuitry. The interface circuitry of each memory device may store a memory identification value to identify each memory device on the bus. The interface circuitry of each memory device is coupled to the bus to receive a transaction request. The comparison circuitry of each memory device is coupled to the programmable register and the interface circuitry to determine whether the identification information in the transaction request corresponds to the memory identification value wherein when the identification information corresponds to a memory identification value, that memory device responds to the transaction request.
Abstract:
The present invention is directed to a method of operating a memory device wherein the memory device includes a plurality of memory cells. The method comprises providing first block size information to the memory device, wherein the first block size information defines a first amount of data to be output onto a bus in response to a read request. The method further includes issuing a first read request to the memory device, wherein in response to the first read request, the memory device outputs the first amount of data corresponding to the first block size information onto the bus synchronously with respect to a first external clock signal and a second external clock signal. In one preferred embodiment, the method may further include providing a code which is representative of a number of clock cycles of the first and second external clock which are to transpire before data is output by the memory device onto the bus. The memory device stores the code in a programmable register on the memory device. In this preferred embodiment, the first amount of data corresponding to the first block size information is output after the number of clock cycles of the first and second external clock transpire. The number of clock cycles may be a whole number or a fraction.
Abstract:
The present invention includes a memory subsystem comprising at least two semiconductor devices, including at least one memory device, connected to a bus, where the bus includes a plurality of bus lines for carrying substantially all address, data and control information needed by said memory devices, where the control information includes device-select information and the bus has substantially fewer bus lines than the number of bits in a single address, and the bus carries device-select information without the need for separate device-select lines connected directly to individual devices.The present invention also includes a protocol for master and slave devices to communicate on the bus and for registers in each device to differentiate each device and allow bus requests to be directed to a single or to all devices. The present invention includes modifications to prior-art devices to allow them to implement the new features of this invention. In a preferred implementation, 8 bus data lines and an AddressValid bus line carry address, data and control information for memory addresses up to 40 bits wide.
Abstract:
The present invention includes a memory subsystem comprising at least two semiconductor devices, including at least one memory device, connected to a bus, where the bus includes a plurality of bus lines for carrying substantially all address, data and control information needed by said memory devices, where the control information includes device-select information and the bus has substantially fewer bus lines than the number of bits in a single address, and the bus carries device-select information without the need for separate device-select lines connected directly to individual devices.The present invention also includes a protocol for master and slave devices to communicate on the bus and for registers in each device to differentiate each device and allow bus requests to be directed to a single or to all devices. The present invention includes modifications to prior-art devices to allow them to implement the new features of this invention. In a preferred implementation, 8 bus data lines and an AddressValid bus line carry address, data and control information for memory addresses up to 40 bits wide.