Abstract:
A dye, such as a fluorescent dye, is incorporated into polymer microparticles using a solvent system composed of a first solvent in which the dye and the microparticle polymer are soluble, a second solvent in which the dye and the microparticle polymer are not or only weakly soluble, and a third solvent in which the dye and the microparticle polymer are not or only weakly soluble. The first and second solvents are immiscible with each other, or at most partially miscible. The third solvent is miscible with the first and second solvents. The formulation provides substantially complete partitioning of the dye to the microparticles. The method may be used to obtain dyed polymer microparticle formed of cross-linked or non-cross-linked polymers. Libraries are provided comprising two or more sets of microparticles of different dye loadings. Fluorescent core-shell microparticles are produced from a mixture of microparticle cores incorporating one or more fluorescent dyes, a polymerization mixture comprising at least one polymerizable shell monomer, at least one free radical polymerization initiator comprising a water-insoluble oxidizing agent, and at least one water-soluble reducing agent.
Abstract:
Solute-loaded polymer microparticles are obtained by immersing microparticles in a bath comprising a selected solute dissolved in a ternary solvent system. A first solvent of the ternary system is a strong solvent for both the solute and the polymer from which the microparticle was formed. A second solvent is a weak solvent or non-solvent for the solute and the polymer (tuning solvent). A third solvent is a weak solvent or non-solvent for the solute and polymer, but serves as a co-solvent with respect to the first and second solvents in that it is miscible with both the first and second solvents. The amount of solute incorporated into the microparticles is controlled by adjusting the ratio of solute with respect to the microparticle polymer, and by adjusting the composition of the ternary solvent system, principally the amount of tuning solvent. The method is particularly useful for providing libraries of combinatorially encoded microparticles containing distinguishable dye loadings, particularly distinguishable fluorescent dye loadings.
Abstract:
Disclosed is a method for the physico-chemical encoding of a collection of beaded resin (“beads”) allowing determination of the chemical identity of bead-anchored compounds, following identification of beads bearing compounds of interest in an assay, by in-situ interrogation of individual beads, which does not require isolation of the beads of interest. These methods can be used to implement color-coding strategies in applications and including the ultrahigh-throughput screening of bead-based combinatorial compounds libraries as well as multiplexed diagnostic and environmental testing aid other biochemical assays.
Abstract:
Disclosed is a method for querying by pattern matching a relational data store, including a collection of records having a preset number of attributes, wherein the representation of the content of a structured or unstructured data source also encodes the structure of the data source, and including these steps:
providing at least one query comprising at least a find- and a where-clause, wherein the where-clause comprises one or more query patterns, and the find-clause specifies a subset of attributes optionally including aliases thereof; executing the query by:
applying predicates in the one or more query patterns to identify a subset of matching or non-matching records; forming the intersection of the two or more subsets of records for two or more patterns; in accordance with the find-clause, selecting specified attributes and applying any aliases; and
thereby identifying the subset of records satisfying constraints expressed in the query patterns.
Abstract:
The present invention provides a method for the generation of novel libraries of encoded magnetic particles from sub-libraries of by the generation of novel sub-libraries of magnetic nanoparticles and encoded particles. The sub-libraries are functionalized on demand are useful in the formation of arrays. The present invention is especially useful for performing multiplexed (parallel) assays for qualitative and/or quantitative analysis of binding interactions of a number of analyte molecules in a sample.
Abstract:
A method of identifying alleles of polymorphic sites in a plurality of nucleic acid samples including the steps of determining a source tag sharing number “d” for each of the alleles; performing a first reaction in a plurality of pools of the alleles to be identified to produce reaction products including a source tag identifying said each pool; pooling the pools to provide pooled pools; for each of the alleles to be identified, performing a second reaction using said reaction products to produce allele-specific second reaction products comprising a marker tag and a derived source tag; identifying said allele-specific second reaction products to identify the alleles. If “d” is equal to or larger than a maximum pool size, the first reaction may not be performed. Alleles may be binned together. A microparticle comprising one or more capture probes each comprising an oligonucleotide complementary to a subsequence of a target polynucleotide.
Abstract:
Genetic information relating to clinically significant attributes are generated as unique molecular signatures, which are provided to a subscriber to be carried as a card or in another form, including for display by a subscriber's computer or smart-phone or PDA. The signature is periodically updated as new clinically significant attributes become known. The process of updating the signature and using it to obtain suitable products (which don't have an unacceptable risk of generating an adverse reaction or outcome) is also described.
Abstract:
A method of identifying alleles of polymorphic sites in a plurality of nucleic acid samples including the steps of determining a source tag sharing number “d” for each of the alleles; performing a first reaction in a plurality of pools of the alleles to be identified to produce reaction products including a source tag identifying said each pool; pooling the pools to provide pooled pools; for each of the alleles to be identified, performing a second reaction using said reaction products to produce allele-specific second reaction products comprising a marker tag and a derived source tag; identifying said allele-specific second reaction products to identify the alleles. If “d” is equal to or larger than a maximum pool size, the first reaction may not be performed. Alleles may be binned together. A microparticle comprising one or more capture probes each comprising an oligonucleotide complementary to a subsequence of a target polynucleotide.
Abstract:
Apparatuses, methods, and computer readable medium, for fulfilling a need for at least one perishable item, the method including reserving a plurality of perishable items with at least partially unknown attribute profiles from a supplier; receiving values for at least some of the reserved at least partially unknown attribute profiles, wherein the received values are determined by tests conducted after the reserving step; determining based on the received values which of the plurality of perishable items satisfy the need for the at least one perishable item; and if at least one of the plurality of perishable items does not satisfy the need for the at least one perishable item, unreserving the at least one perishable item of the plurality of perishable items determined not to satisfy the need for the at least one perishable item.
Abstract:
Disclosed is a single stranded primer-promoter-selector construct comprising (in 3′ to 5′ orientation) a primer subsequence annealing to the target, a T7 or other promoter subsequence (the template strand), and a selector subsequence. The primer can be extended by template mediated elongation, including reverse transcription, or ligation to another oligonucleotide. The promoter sequence is oriented to direct the in-vitro transcription (IVT) opposite to that of primer extension, where the selector subsequence serves as a template for IVT. The selector is associated with the target subsequence of interest and it, and the amplified product are unique subsequences, dissimilar to other sequence present in the sample. The construct's is useful for determination of the presence and relative abundance of designated subsequences in the sample, multiplex gene expression analysis, multiplex allele counting, determination of polymorphic/mutation site, and loss of heterozygosity.