Abstract:
A vibration device that is used in a camera body including a lens includes a cylindrical vibrating body including a piezoelectric vibrator, a cylindrical mode converting connected member connected to one end of the cylindrical vibrating body, and a light transmitting body attached to the mode converting connected member. The light transmitting body includes a light transmitting portion disposed on a front side of the lens. The mode converting connected member includes a thin portion having a thickness smaller than a thickness of the cylindrical vibrating body.
Abstract:
A vibration device that is used in a camera body including a lens includes a cylindrical vibrating body including a piezoelectric vibrator, a cylindrical mode converting connected member connected to one end of the cylindrical vibrating body, and a light transmitting body attached to the mode converting connected member. The light transmitting body includes a light transmitting portion disposed on a front side of the lens. The mode converting connected member includes a thin portion having a thickness smaller than a thickness of the cylindrical vibrating body.
Abstract:
Provided is a method for producing a piezoelectric thin-film element including a piezoelectric thin-film layer having good surface morphology and high crystallinity. The method includes forming a lower electrode layer on a substrate; forming a piezoelectric thin-film buffer layer on the lower electrode layer at a relatively low film-formation temperature; forming a piezoelectric thin-film layer on the piezoelectric thin-film buffer layer at a film-formation temperature that is higher than the film-formation temperature for the piezoelectric thin-film buffer layer; and forming an upper electrode layer on the piezoelectric thin-film layer.
Abstract:
A piezoelectric device includes a connecting section connecting a pair of beam sections adjacent to each other. The connecting section is connected to one of the pair of beam sections at a first end portion. The connecting section is connected to another of the pair of beam sections at a second end portion. The second end portion faces the first end portion in a direction in which the pair of beam sections are aligned. A second coupling portion is located along a first coupling portion. The connecting section includes only one first end portion. The connecting section includes only one second end portion. Each of the first end portion and the second end portion is closer to a tip end portion than to a fixed end portion of each of the pair of beam sections.
Abstract:
A transducer includes a base, beams, and a coupler. The beams each include a piezoelectric layer, a first electrode layer, and a second electrode layer. The coupler is fitted in slits between adjacent beams to define a connection between the beams. The coupler extends from an upper portion of the base into each of the slits without a break. A Young's modulus of the material of the coupler is lower than a Young's modulus of the material of the piezoelectric layer. A maximum thickness of the coupler in the upper portion of the base in the direction of the central axis of the base is greater than a thickness of each of the beams.
Abstract:
A MEMS device includes a membrane portion, a piezoelectric layer made of a piezoelectric single crystal, a first electrode on a first surface of the piezoelectric layer, a second electrode on a second surface of the piezoelectric layer opposite to the first direction, and a first layer covering the first surface of the piezoelectric layer. At least a portion of the piezoelectric layer is included in the membrane portion. Each of the first electrode and the second electrode has a tapered cross-sectional shape with a width which decreases with increasing distance from the piezoelectric layer on a cross section along a plane vertical to the surface in the first direction.
Abstract:
A vibrating device includes a tubular vibrating body and a lens cover coupled to a first surface of the tubular vibrating body. The tubular vibrating body includes a tubular member and piezoelectric vibrators. The lens cover includes a mode changing coupler and a light transmitting body unit disposed in front of a lens of a camera. The mode changing coupler includes a thin portion having a thickness smaller than a thickness of the tubular member.
Abstract:
A piezoelectric transformer that includes a vibration portion assembly having an output electrode, an output-side intermediate electrode, an input-side intermediate electrode, and an input electrode. The vibration portion assembly includes n vibration portions. The input electrode includes one to n input electrode pieces. The output electrode includes one to n output electrode pieces. Wiring lines are arranged such that voltages of opposite phases can be respectively applied to a first input electrode piece group of the input electrode pieces corresponding to odd-numbered vibration portions, and a second input electrode piece group of the input electrode pieces corresponding to even-numbered vibration portions. The second output electrode piece and the first output-side intermediate electrode piece are superposed with each other in the thickness direction. The first output electrode piece is not superposed with either of the first and second output-side intermediate electrode pieces in the thickness direction.
Abstract:
A piezoelectric device that includes a base member having an opening therein and an upper layer supported by the base member. The upper layer includes a vibration portion at a location corresponding to the opening in the base member. The vibration portion includes a lower electrode, an intermediate electrode and an upper electrode that are spaced apart from one another in a thickness direction of the piezoelectric device. The upper layer includes a first piezoelectric layer disposed so as to be at least partially sandwiched between the lower electrode and the intermediate electrode, and a second piezoelectric layer disposed so as to overlap with the first piezoelectric layer and so as to be at least partially sandwiched between the intermediate electrode and the upper electrode. The first piezoelectric layer and the second piezoelectric layer are different in relative permittivity in the thickness direction of the piezoelectric device.
Abstract:
A vibration device includes a cylindrical vibration body portion including a cylindrical member and a piezoelectric vibrator fixed to the cylindrical member, and a light-transparent body portion that includes an outer peripheral portion connected to an end surface of the cylindrical member and a light-transparent portion positioned in front of a lens. The light-transparent body portion vibrates in a bending mode by vibration of the cylindrical vibration body portion. The bending mode includes a first bending mode in which a center-maximum-displacement portion of the light-transparent body portion and the outer peripheral portion of the light-transparent body portion connected to the end surface are displaced in the same direction and a second bending mode in which the center-maximum-displacement portion of the light-transparent body portion and the outer peripheral portion of the light-transparent body portion are displaced in opposite directions.