Abstract:
A method suitable for use during fabrication of a semiconductor device such as a dynamic random access memory or a flash programmable read-only memory comprises etching through silicon nitride and pad oxide layers and into a semiconductor wafer to form a trench into the wafer. A shallow trench isolation (STI) layer is formed in the opening in the silicon nitride and in the trench in the wafer which will, under certain conditions, form with an undesirable void. The silicon nitride and pad oxide layers are removed, then an epitaxial silicon layer is formed on the silicon wafer between the STI. A gate/tunnel oxide layer is formed on the epitaxial silicon layer, then a word line is formed over the gate/tunnel oxide. The epitaxial silicon layer ensures that some minimum distance is maintained between the gate/tunnel oxide and the void in the STI. Wafer processing may then be continued to form a completed semiconductor device.
Abstract:
Formation of a layer of material on a surface by atomic layer deposition methods and systems includes using electron bombardment of the chemisorbed precursor.
Abstract:
Devices usable as sensors, as transducers, or as both sensors and transducers include one or more nanotubes or nanowires. In some embodiments, the devices may each include a plurality of sensor/transducer devices carried by a common substrate. The sensor/transducer devices may be individually operable, and may exhibit a plurality of resonant frequencies to enhance the operable frequency bandwidth of the devices. Sensor/transducer devices include one or more elements configured to alter a resonant frequency of a nanotube. Such elements may be selectively and individually actuable. Methods for sensing mechanical displacements and vibrations include monitoring an electrical characteristic of a nanotube. Methods for generating mechanical displacements and vibrations include using an electrical signal to induce mechanical displacements or vibrations in one or more nanotubes. Methods for adjusting an electrical signal include passing an electrical signal through a nanotube and changing a resonant frequency of the nanotube.
Abstract:
Devices usable as sensors, as transducers, or as both sensors and transducers include one or more nanotubes or nanowires. In some embodiments, the devices may each include a plurality of sensor/transducer devices carried by a common substrate. The sensor/transducer devices may be individually operable, and may exhibit a plurality of resonant frequencies to enhance the operable frequency bandwidth of the devices. Sensor/transducer devices include one or more elements configured to alter a resonant frequency of a nanotube. Such elements may be selectively and individually actuable. Methods for sensing mechanical displacements and vibrations include monitoring an electrical characteristic of a nanotube. Methods for generating mechanical displacements and vibrations include using an electrical signal to induce mechanical displacements or vibrations in one or more nanotubes. Methods for adjusting an electrical signal include passing an electrical signal through a nanotube and changing a resonant frequency of the nanotube.
Abstract:
Devices usable as sensors, as transducers, or as both sensors and transducers include one or more nanotubes or nanowires. In some embodiments, the devices may each include a plurality of sensor/transducer devices carried by a common substrate. The sensor/transducer devices may be individually operable, and may exhibit a plurality of resonant frequencies to enhance the operable frequency bandwidth of the devices. Sensor/transducer devices include one or more elements configured to alter a resonant frequency of a nanotube. Such elements may be selectively and individually actuable. Methods for sensing mechanical displacements and vibrations include monitoring an electrical characteristic of a nanotube. Methods for generating mechanical displacements and vibrations include using an electrical signal to induce mechanical displacements or vibrations in one or more nanotubes. Methods for adjusting an electrical signal include passing an electrical signal through a nanotube and changing a resonant frequency of the nanotube.
Abstract:
Methods and devices for selective etching in a semiconductor process are shown. Chemical species generated in a reaction chamber provide both a selective etching function and concurrently form a protective coating on other regions. An electron beam provides activation to selective chemical species. In one example, reactive species are generated from a halogen and carbon containing gas source. Addition of other gasses to the system can provide functions such as controlling a chemistry in a protective layer during a processing operation.
Abstract:
Methods and apparatus may operate to position a sample, including an imager lens surface, within a processing chamber. Further activities may include creating a layer of reactive material in proximity with the imager lens surface, and exciting a portion of the layer of reactive material in proximity with the imager lens surface to form chemical radicals. Additional activities may include removing a portion of the material in proximity to the excited portion of the imager lens surface to a predetermined level, and continuing the creating, exciting and removing actions until at least one of a plurality of stop criteria occurs.
Abstract:
Methods and devices for selective etching in a semiconductor process are shown. Chemical species generated in a reaction chamber provide both a selective etching function and concurrently form a protective coating on other regions. An electron beam provides activation to selective chemical species. In one example, reactive species are generated from a plasma source to provide an increased reactive species density. Addition of other gasses to the system can provide functions such as controlling a chemistry in a protective layer during a processing operation. In one example an electron beam array such as a carbon nanotube array is used to selectively expose a surface during a processing operation.
Abstract:
Methods and devices for selective etching in a semiconductor process are shown. Chemical species generated in a reaction chamber provide both a selective etching function and concurrently form a protective coating on other regions. An electron beam provides activation to selective chemical species. In one example, reactive species are generated from a plasma source to provide an increased reactive species density. Addition of other gasses to the system can provide functions such as controlling a chemistry in a protective layer during a processing operation.
Abstract:
Devices usable as sensors, as transducers, or as both sensors and transducers include one or more nanotubes or nanowires. In some embodiments, the devices may each include a plurality of sensor/transducer devices carried by a common substrate. The sensor/transducer devices may be individually operable, and may exhibit a plurality of resonant frequencies to enhance the operable frequency bandwidth of the devices. Sensor/transducer devices include one or more elements configured to alter a resonant frequency of a nanotube. Such elements may be selectively and individually actuable. Methods for sensing mechanical displacements and vibrations include monitoring an electrical characteristic of a nanotube. Methods for generating mechanical displacements and vibrations include using an electrical signal to induce mechanical displacements or vibrations in one or more nanotubes. Methods for adjusting an electrical signal include passing an electrical signal through a nanotube and changing a resonant frequency of the nanotube.