Abstract:
A thermostat for controlling an HVAC system is described, the thermostat having a user interface that is visually pleasing, approachable, and easy to use while also providing ready access to, and intuitive navigation within, a menuing system capable of receiving a variety of different types of user settings and/or control parameters. For some embodiments, the thermostat comprises a housing, a ring-shaped user-interface component configured to track a rotational input motion of a user, a processing system configured to identify a setpoint temperature value based on the tracked rotational input motion, and an electronic display coupled to the processing system. An interactive thermostat menuing system is accessible to the user by an inward pressing of the ring-shaped user interface component. User navigation within the interactive thermostat menuing system is achievable by virtue of respective rotational input motions and inward pressings of the ring-shaped user interface component.
Abstract:
A thermostat for controlling an HVAC system is described, the thermostat having a user interface that is visually pleasing, approachable, and easy to use while also providing ready access to, and intuitive navigation within, a menuing system capable of receiving a variety of different types of user settings and/or control parameters. For some embodiments, the thermostat comprises a housing, a ring-shaped user-interface component configured to track a rotational input motion of a user, a processing system configured to identify a setpoint temperature value based on the tracked rotational input motion, and an electronic display coupled to the processing system. An interactive thermostat menuing system is accessible to the user by an inward pressing of the ring-shaped user interface component. User navigation within the interactive thermostat menuing system is achievable by virtue of respective rotational input motions and inward pressings of the ring-shaped user interface component.
Abstract:
Apparatus, systems, methods, and computer program products are disclosed for providing software updates to client devices. A client device (such as a thermostat) executes software to perform one or more functionalities of the device. Upon receiving an indicating that a software update is available, the device waits to download the software update until pre-download conditions are satisfied. Once the software update is downloaded, the device then waits to install the software update until pre-install conditions are satisfied. If the software update is non-critical and received during an initial installation of the device, the software update may not be installed until after installation of the device is complete. If the device is a thermostat, the device may delay installation of the software update until a controlled HVAC system in inactive. Control of the HVAC system may be disabled during installation of the software update.
Abstract:
A thermostat includes a housing, a user interface, and a processing system configured to control an HVAC system using setpoint temperature values. The thermostat may also include a plurality of HVAC connectors configured to receive corresponding HVAC control wires, and a connection sensing module configured to determine the identities of HVAC connectors into which corresponding wires have been inserted. The processing system may be further configured to identify, based on the subset of HVAC connectors, whether (i) only a single possible HVAC system configuration is indicated thereby, or (ii) multiple possible HVAC system configurations are indicated thereby, resolve a particular one of the multiple possible HVAC system configurations that is applicable based on a user response to an inquiry presented on the user interface, and operate the HVAC system according to the HVAC system configuration.
Abstract:
A thermostat for controlling an HVAC system is described, the thermostat having a user interface that is visually pleasing, approachable, and easy to use while also providing ready access to, and intuitive navigation within, a menuing system capable of receiving a variety of different types of user settings and/or control parameters. For some embodiments, the thermostat comprises a housing, a ring-shaped user-interface component configured to track a rotational input motion of a user, a processing system configured to identify a setpoint temperature value based on the tracked rotational input motion, and an electronic display coupled to the processing system. An interactive thermostat menuing system is accessible to the user by an inward pressing of the ring-shaped user interface component. User navigation within the interactive thermostat menuing system is achievable by virtue of respective rotational input motions and inward pressings of the ring-shaped user interface component.
Abstract:
Systems and methods are provided for efficiently controlling energy-consuming systems, such as heating, ventilation, or air conditioning (HVAC) systems. For example, an electronic device used to control an HVAC system may encourage a user to select energy-efficient temperature setpoints. Based on the selected temperature setpoints, the electronic device may generate or modify a schedule of temperature setpoints to control the HVAC system.
Abstract:
A thermostat for controlling an HVAC system is described, the thermostat having a user interface that is visually pleasing, approachable, and easy to use while also providing ready access to, and intuitive navigation within, a menuing system capable of receiving a variety of different types of user settings and/or control parameters. For some embodiments, the thermostat comprises a housing, a ring-shaped user-interface component configured to track a rotational input motion of a user, a processing system configured to identify a setpoint temperature value based on the tracked rotational input motion, and an electronic display coupled to the processing system. An interactive thermostat menuing system is accessible to the user by an inward pressing of the ring-shaped user interface component. User navigation within the interactive thermostat menuing system is achievable by virtue of respective rotational input motions and inward pressings of the ring-shaped user interface component.
Abstract:
Methods and devices for controlling a heating, ventilation, and air conditioning (HVAC) system by a thermostat are provided. Input can be received from a user via a thermostat, the input being indicative of an adjustment of an HVAC-related setting. On a real-time basis, the HVAC-related setting that is being adjusted can be compared against a feedback criterion designed to indicate a circumstance under which feedback is to be presented to the user. The circumstance can be indicative of an achievement of a HVAC-related setting of a predetermined responsibility level with respect to an energy usage of the HVAC system. Upon a real-time determination that the feedback criterion is satisfied, visual feedback can be caused to be presented to the user in real-time. The real-time feedback can include a visual icon having a visual appeal corresponding to a desirability of the satisfaction of the feedback criterion.
Abstract:
Provided according to one or more embodiments is a thermostat having a housing, the housing including a forward-facing surface, the thermostat comprising a passive infrared (PIR) motion sensor disposed inside the housing for sensing occupancy in the vicinity of the thermostat. The PIR motion sensor has a radiation receiving surface and is able to detect the lateral movement of an occupant in front of the forward-facing surface of the housing. The thermostat further comprises a grille member having one or more openings and included along the forward-facing surface of the housing, the grille member being placed over the radiation receiving surface of the PIR motion sensor. The grille member is configured and dimensioned to visually conceal and protect the PIR motion sensor disposed inside the housing, the visual concealment promoting a visually pleasing quality of the thermostat, while at the same time permitting the PIR motion sensor to effectively detect the lateral movement of the occupant. In one embodiment, the grille member openings are slit-like openings oriented along a substantially horizontal direction.