Abstract:
A method of and apparatus for detecting diseased tissue based upon infrared imaging in two different bands of infrared wavelengths is described. The use of two series of infrared images taken in two different bands of infrared wavelengths increases sensitivity to the subtle temperature changes caused by diseased skin and tissue, especially in the case of cancerous tissue. By sensing skin temperature, the homogeneity thereof, the time variations thereof and the correlation between the two series of infrared images, the present invention decreases the rate of false positives and false negatives. The increased discrimination due to two series of infrared images allows for reliable detection of diseased or cancerous tissue even in the presence of skin tone variations such as birthmarks, tattoos and freckles. The present invention finds special application in the field of breast cancer detection where subtle skin temperature variations may readily be sensed using two series of infrared images.
Abstract:
A multi-spectral detector for use in a passive/active system and a method for use in identifying an object in a field of view are disclosed. The multi-spectral detection system comprises an optically dispersive element, a detector array, and an integrated circuit. The optically dispersive element is capable of separating received LADAR radiation and radiation received from a scene into a plurality of spectral components and distributing the separated spectral components; and a detector array. The detector array includes a plurality of detectors capable of detecting the LADAR radiation; and a plurality of detectors capable of detecting the spectral components of the scene radiation. The integrated circuit is capable of generating a plurality of electrical signals representative of predetermined characteristics of the detected LADAR radiation and the detected spectral components. The method comprises passively detecting scene radiation employing a detector array; and actively detecting LADAR radiation through the detector array in parallel with passively detecting the scene radiation.
Abstract:
A method of and apparatus for detecting diseased tissue based upon infrared imaging in two different bands of infrared wavelengths is described. The use of two series of infrared images taken in two different bands of infrared wavelengths increases sensitivity to the subtle temperature changes caused by diseased skin and tissue, especially in the case of cancerous tissue. By sensing skin temperature, the homogeneity thereof, the time variations thereof and the correlation between the two series of infrared images, the present invention decreases the rate of false positives and false negatives. The increased discrimination due to two series of infrared images allows for reliable detection of diseased or cancerous tissue even in the presence of skin tone variations such as birthmarks, tattoos and freckles. The present invention finds special application in the field of breast cancer detection where subtle skin temperature variations may readily be sensed using two series of infrared images.
Abstract:
A diffraction grating coupled infrared photodetector for providing high performance detection of infrared radiation is described. The photodetector includes a three-dimensional diffractive resonant optical cavity formed by a diffraction grating that resonates over a range of infrared radiation wavelengths. By placing a limited number of p/n junctions throughout the photodetector, the photodetector thermal noise is reduced due to the reduction in junction area. By retaining signal response and reducing the noise, the sensitivity increases at a given operating temperature when compared to traditional photovoltaic and photoconductive infrared photodetectors up to the background limit. The photodetector device design can be used with a number of semiconductor material systems, can form one- and two-dimensional focal plane arrays, and can readily be tuned for operation in the long wavelength infrared and the very long wavelength infrared where sensitivity and noise improvements are most significant.
Abstract:
A method and apparatus for stretching a pulse, shaping a stretched pulse, and modeling a stretched and/or shaped pulse are disclosed. An etalon has a port, a partially reflective surface, and a fully reflective surface. A base pulse is introduced into the etalon, and a plurality of portions of the base pulse propagating from the etalon are collected. The collected portions are then combined to generate a stretched pulse whose width is proportional to the width of the base pulse. This can be modeled by assigning a transmission factor value to each one of a plurality of taps and a reflection factor value to each one of the taps, excepting only one tap. A transport delay for is assigned to each tap to which a reflection factor value was assigned, wherein the transport delay is proportional to the width of a base pulse.
Abstract:
A radiation detector is provided that includes a photodiode having a radiation absorber with a graded multilayer structure. Each layer of the absorber is formed from a semiconductor material, such as HgCdTe. A first of the layers is formed to have a first predetermined wavelength cutoff. A second of the layers is disposed over the first layer and beneath the first surface of the absorber through which radiation is received. The second layer has a graded composition structure of the semiconductor material such that the wavelength cutoff of the second layer varies from a second predetermined wavelength cutoff to the first predetermined wavelength cutoff such that the second layer has a progressively smaller bandgap than the first bandgap of the first layer. The graded multilayer radiation absorber structure enables carriers to flow toward a conductor that is used for measuring the radiation being sensed by the radiation absorber.
Abstract:
A method of and apparatus for detecting diseased tissue based upon infrared imaging in two different bands of infrared wavelengths is described. The use of two series of infrared images taken in two different bands of infrared wavelengths increases sensitivity to the subtle temperature changes caused by diseased skin and tissue, especially in the case of cancerous tissue. By sensing skin temperature, the homogeneity thereof, the time variations thereof and the correlation between the two series of infrared images, the present invention decreases the rate of false positives and false negatives. The increased discrimination due to two series of infrared images allows for reliable detection of diseased or cancerous tissue even in the presence of skin tone variations such as birthmarks, tattoos and freckles. The present invention finds special application in the field of breast cancer detection where subtle skin temperature variations may readily be sensed using two series of infrared images.
Abstract:
A method of and apparatus for detecting diseased tissue based upon infrared imaging in two different bands of infrared wavelengths is described. The use of two series of infrared images taken in two different bands of infrared wavelengths increases sensitivity to the subtle temperature changes caused by diseased skin and tissue, especially in the case of cancerous tissue. By sensing skin temperature, the homogeneity thereof, the time variations thereof and the correlation between the two series of infrared images, the present invention decreases the rate of false positives and false negatives. The increased discrimination due to two series of infrared images allows for reliable detection of diseased or cancerous tissue even in the presence of skin tone variations such as birthmarks, tattoos and freckles. The present invention finds special application in the field of breast cancer detection where subtle skin temperature variations may readily be sensed using two series of infrared images.
Abstract:
A multi-spectral super-pixel photodetector for detecting four or more different bands of infrared radiation is described. The super-pixel photodetector includes two or more sub-pixel photodetectors, each of which includes a diffractive resonant optical cavity that resonates at two or more infrared radiation bands of interest. By detecting infrared radiation at two or more different applied biases and by generating a spectral response curve for each of the sub-pixel photodetectors at each of these biases, the response to each of the individual bands of infrared radiation can be calculated. The response to each band of infrared radiation can be found by deconvolving the response at each bias. The super-pixel photodetector finds use in military and medical imaging applications and can cover a broad portion of the infrared spectrum.
Abstract:
The described embodiments of the present invention include a method for forming a radiation detector. A radiation absorption layer is formed on a substrate. A wider bandgap layer is formed on the radiation absorption layer. A passivation layer is formed on the wider bandgap layer. A doping layer is formed on the passivation layer. The doping layer is then patterned and dopant is driven from the patterned doping layer into the junction layer and the radiation absorption layer to form a doped region. The passivation layer is patterned to expose the doped region and an electrical contact to the doped region is formed.